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Introduction 
 

 

During 11-15 April 2016, ECMWF hosted the joint ECMWF/WWRP Workshop on Model 
Uncertainty. 

This workshop saw more than 80 international experts meet to discuss the latest developments 
in diagnosing and characterising model error, and building schemes for simulating model 
uncertainty in assimilation and prediction systems. The workshop focussed on how to improve 
the physical basis of the stochastic forcing techniques, which are used to represent the effect of 
uncertainties in resolved and under-resolved processes in global atmospheric models, 
convection-permitting models and the longer timescales for land-surface, ocean and sea-ice 
coupling. 

Through a combination of oral presentations, poster presentations and Working Group 
discussions, the workshop sought to answer the questions: 

• What are the fundamental sources of model error? 
• How can we improve the diagnosis of model error? 
• What are and how do we measure the pros and cons of existing approaches to 

representing model uncertainty? 
• How do we improve the physical basis for model uncertainty schemes? 

Presented in these Workshop Proceedings are summaries of the oral presentations; as well as 
reports from the Working Groups, which outline their discussions and present 
recommendations for future research directions. 

 



Report from Working Group 1 

What are the sources of model error and how can we improve the physical basis of model 
uncertainty representation? 

Group Members 

George Craig (Chair), Richard Forbes (co-chair), Saleh Abdalla, Gianpaolo Balsamo, Peter Bechtold, 
Judith Berner, Roberto Buizza, Alfons Callado Pallares, Pieter De Meutter, Peter Dueben, 
Inger-Lise Frogner, Normand Gagnon, Dan Hodyss, Darryl Holm, Sarah-Jane Lock, Ekaterina 
Machulskaya, Husain Najafi, Pirkka Ollinaho, Tobias Selz, Leo Separovic, Aneesh Subramanian, 
John Tseng, Antje Weisheimer 

 

The aim of Working Group 1 (WG1) was to identify the key issues and recommend priorities for 
future research directions for ECMWF and the wider research community to understand the sources 
of uncertainty and improve the representation of uncertainty in models. This summary provides a 
brief record of some of the main points discussed by the Working Group and the recommendations 
that came out of the discussion, structured around four questions: 

(1) What are the sources of model uncertainty?  

(2) What are the characteristics of error growth/scale interactions?  

(3) How can we improve the physical basis of model uncertainty representation? 

(4) How can we enhance collaboration across the research community? 

 

1) What are the sources of model uncertainty? 

• There are various sources of uncertainty in models that can result in model error, arising from 
spatial and temporal truncation errors, and limitations of our knowledge of physical processes 
across the “Earth system” (atmosphere, ocean, land surface, sea-ice, atmospheric composition). 

• Model error is dominated by the representation of physical processes (e.g. boundary layer 
turbulence, surface coupling, cloud microphysics, cloud-radiation interaction, aerosols, 
convection gravity waves, surface drag), but we shouldn’t neglect the uncertainty in the 
dynamics. Convective processes are a prominent source of model uncertainty due to strong non-
linearities and upscale growth.  

• Parametrization errors can arise from structural uncertainty (incorrect, or partial representation 
of the equations needed to describe the evolution), parameter uncertainty, and truncation 
errors. Errors can be thought of as either "systematic" or "random/intrinsic". Systematic errors 
are often related to particular meteorological regimes (i.e. due to regime-dependent errors in 
the physics which directly affect the meso/synoptic scales), whereas intrinsic errors can be 
considered to be due to upscale growth of uncertainty at the small scales, missing degrees of 
freedom and truncation errors. The former are visible in a deterministic forecast and have scope 
to be reduced by model improvements, the latter will always require stochastic perturbations in 
an ensemble. However, it can be very difficult to define and separate these different sources of 
error in models. Systematic errors may also be due to the non-linear response of the system to 
random perturbations. Regime-dependent systematic parametrization errors may appear as 
random error over some space or time scale due to the varying meteorological regimes.  



• In practice it is difficult to disentangle different sources of model error (systematic error versus 
random error, truncation error versus physical process uncertainty, structural error versus 
parameter uncertainty) and model uncertainty schemes need to represent all these sources of 
error. Efforts should continue to try to define the different sources so that they can be 
represented more effectively. This will require different techniques such as coarse-graining 
studies, and sensitivity experiments to determine the most influencing parameters and terms in 
the equations. Multi-model/physics ensembles can provide improved spread in some situations 
– can we learn about structural errors from these? 

• Data assimilation provides valuable information on model error in the short range and this 
should be exploited much more systematically. 

Recommendations 

1. WG1 recognises the potential benefit of diagnosing model error from data assimilation, and 
recommends further work to understand the relationships between the representation of model 
error in the data assimilation system and the underlying dynamical and physical processes. 

2. WG1 recommends that sensitivity/coarse-graining studies using convective-scale observations 
and models should continue to be pursued as they have further potential to inform model 
uncertainty representation and identify the most important processes. 

3. WG1 recommends that sensitivity experiments of existing model uncertainty schemes (e.g. SPPT) 
should continue to be pursued as they have further potential for learning about the 
representation of model uncertainty (not just a tuning exercise). 

4. WG1 recognises that multi-model/multi-physics-based ensembles can still add value for model 
uncertainty representation, particularly in the short-range, and recommends comparing different 
models to understand/inform how to better represent structural errors in model 
parametrizations. 

 

2) What are the characteristics of error growth/scale interactions? 

• Representing uncertainty is not just a truncation/parametrization problem – we need to 
consider how errors propagate through the system. 

• Some large scale errors are the result of small-scale errors that have propagated upscale, and 
some model errors are intrinsically large-scale in nature (e.g. due to regime-dependent 
systematic errors in parametrizations).  

• To what extent do large-scale errors need to be represented at the small scale and propagated 
through the same processes, or can their large-scale effect be directly simulated as large-scale 
perturbations (for example, as suggested by the large spatial and temporal decorrelation times 
in SPPT)? 

• Identification whether the errors are from small or large scales can help in targeting the latter 
where there is larger potential of improvement, compared to the former which may have 
already hit their intrinsic limit. Possible double counting should be avoided. 

• The idea that the -5/3 energy spectrum, as emerged from observations (e.g. Nastrom and Gage), 
has an important role in getting correct error growth and in responding to stochastic 
perturbations was discussed. It is of course good to have the correct spectrum but the 
mechanisms responsible for the -5/3 mesoscale energy spectrum are not fully understood, so it 
is not clear whether a failure to represent this spectrum is associated with incorrect error 
growth. 



• Is the -5/3 slope universal? Probably not in all regions, e.g. the tropics. The -5/3 spectrum may 
be a universal property of the system or it may be due to multi-scale interactions. What 
processes set this slope in the atmosphere – 3D turbulence, gravity waves, convection, 
orography? What processes set the slope in models – numerical schemes, physical 
parametrizations and their interaction with the dynamical core? Just because a model has the -
5/3 spectra does not necessarily mean it is there for the right reasons. 

• Some models represent the -5/3 spectra and some do not. The importance of capturing the 
correct spectrum could be examined by running two models with and without this spectrum and 
investigating the error growth from the same stochastic perturbations applied at varying scales.  

• There are also scale interactions between land/ocean/atmosphere on different space and time 
scales which are not well understood and further work is required here. 

Recommendations: 

5. WG1 recommends that model experiments are designed and performed to determine how error 
growth characteristics are captured, using models that do and do not represent the -5/3 spectra, 
and across different model resolutions (down to convective resolving scales). 

6. WG1 recommends further analysis of observed atmospheric spectra to determine how universal 
the -5/3 is or how spectra vary with location, latitude, height, meteorological regime etc... 

7. WG1 recommends exploring the importance of interactions within and between the uncertainty 
in various components of the Earth System with different error growth time scales (e.g. 
importance of resolving mesoscale eddies in ocean models versus stochastic representation of 
mesoscale eddy processes). 

 

3) How can we improve the physical basis of model uncertainty representation? 

• WG1 discussed what “physically based” actually meant? One interpretation is a model 
uncertainty representation that is free from tunable parameters, instead based on universal 
properties that can be defined in some way from observations (e.g. are the dominant synoptic 
scale spatial patterns of perturbations used in SPPT intrinsic to all models, and if so, why?). An 
alternative interpretation is a representation of model uncertainty that is close to the relevant 
phenomena or processes (e.g. stochastically perturbed parameter (SPP) approach or stochastic 
convection schemes). “Physical consistency” is a different term that could be used. For example, 
tapering of the SPPT perturbations to zero in the boundary layer in the IFS is done for practical 
reasons and is not physically consistent with the perturbations in the rest of the column. 

• Previous workshops have recommended building representations of uncertainty into the model 
physics parametrizations (e.g. stochastic convection schemes). We still think this is a priority, but 
benefits will only be realised if other parts of the model it interacts with are good enough. 
Model uncertainty is not just a parametrization problem; it also depends on, for example, 
upscale growth, scale interactions, dynamics and numerics. 

• An improved physical consistency will need to address the different sources of model error as 
directly as possible and will likely consist of a combination of a number of approaches (e.g. 
representing subgrid-scale uncertainty, physics parameter uncertainty, uncertainty in all the 
components of the Earth system). We expect there will always be some uncertainty that we 
don’t know how to represent explicitly.  



• Stochastic advection (e.g. by a velocity containing a Brownian component with spatial correlations) is 
an example of how the dynamics and physics can be considered self-consistently. It potentially 
addresses two aspects of model error below the truncation scale: advective transfer by stochastic 
flow, and uncertainty and approximations in the physical parametrizations on the sub-gridscale flow. 

• In many models there is missing smaller scale variability in the ensemble of near-surface 
parameters, which are important for forecast users (e.g. 2m temperature). Perturbations to soil 
moisture could be explored, or parameters in the land surface model, such as coupling 
coefficients or soil characteristics. Surface model perturbations could address the fast-coupling 
processes first, which should be climate neutral, but other perturbations may also be required to 
represent longer timescale uncertainties. 

Recommendations 

8. WG1 recommends to continue working on improving the physical basis and physical consistency 
of model uncertainty representation, but it needs to be considered in the context of the whole 
ensemble prediction system and on improving our understanding of all the sources of model 
uncertainty, such as physics, dynamics, numerics and multi-scale interactions. 

9. WG1 recommends investigation of stochastic advection processes to represent the advective 
transfer by stochastic flow below the truncation scale in models. 

10. WG1 recommends a more concerted effort to improve the ensemble spread of near-surface 
fields, which are important for forecast users. 

 

4) How can we enhance collaboration across the research community? 

• WG1 discussed how research in the area of model uncertainty could be enhanced by increased 
collaboration between the NWP community and the academic community. 

• Specifically for ECMWF, links with the academic community are good, for example through the 
OpenIFS initiative, the ERA reanalysis projects or TIGGE datasets. These play a very important 
role in stimulating research. Links could be strengthened to enhance collaboration for mutual 
benefit, realising that this takes investment of time on both sides. 

• Personal contacts are very important to facilitate collaboration, either through meetings and 
workshops, scientific visits (in both directions), joint research projects or PhD students. 

• Improved representation of model uncertainty needs to be explored in an ensemble context, but 
it is difficult to run the ensemble system outside of an NWP centre and this needs to be made 
easier to encourage research.  

• Model uncertainty is more than a parameterization problem – it includes dynamical meteorology, 
physical processes, numerics, and mathematics including stochastic methods. It is therefore a topic 
that would benefit from a range of ideas from different disciplines. The research community should 
be exploring alternative well-founded approaches to representing model uncertainty. 

Recommendations 

11. WG1 recommends that ECMWF continues with and enhances collaboration with external 
researchers. 

12. WG1 recommends that ECMWF consider how to facilitate access to the ensemble prediction 
system (ENS) for external researchers, so that modifications can be made without intensive 
ECMWF staff support and so that evaluation can be done more easily outside ECMWF or within a 
Special Project. 

13. WG1 recommends that WWRP/WCRP and other organisations include model uncertainty as a 
topic in future meetings, to gain expert input, to focus interest and foster collaboration. 



Report from Working Group 2 
 
How can we improve the diagnosis of model error? 

 
Chair:               Heini Wernli 
Rapporteur:   Mark Rodwell 

 
Group Members 

Craig Bishop, Neill Bowler, Steven Cavallo, Shuyi Chen, Mike Cullen, Mike Fisher, 
Jacky Goddard, Heikki Haario, Trond Iversen, Heikki Jarvinen, Christian Keil, Simon Lang, 
Amos Lawless, Glen Romine, Peter Watson 

 
1. Introduction 

 
The working group discussed the questions in sections 2-5 below. The write-up summarises these 
discussions and gives some recommendations for future research. 

 
2. How can we better use observations/models to diagnose model error? 

 
Develop and refine Weak Constraint 4DVAR, observation error covariance (R) estimation 
and innovation/residual based “Desroziers/Todling” diagnostics for estimating the mean and 
covariance of model errors. Weak constraint 4DVAR provides direct estimates of individual, 
flow-specific model error realizations, which should be studied. Several techniques for 
model-error estimation presented during the workshop require weak-constraint 4DVAR 
and/or the gradient and adjoint of the model and analysis. Hence, the maintenance of 
advanced adjoint based methods is advised. Toddling estimates of model error covariance 
require accurate estimates of observation error covariances so accurate techniques for 
doing this need to be developed (See Craig Bishop’s presentation to this workshop). 

Consider running idealised experiments with prescribed plausible model error forcing to assess 
what aspects of the mean and covariance of the distribution of model errors could be 
recovered from simulated observations that resemble today’s observational network and, 
perhaps, what changes or field campaigns could be recommended to improve its ability to 
define the mean and covariance of model error. Consider using Intensive Observing Periods 
from previous field campaigns for estimating model error. We recommend that Field 
Campaigns make it as easy as possible for their special observations to be used in this way. 
Experiments with prescribed plausible forcing to assess the quality of estimates of individual 
model error realizations would also be useful. 

Assess the extent to which an ensemble of weak-constraint 4DVAR based error recovery 
techniques would allow flow-dependent estimates of model error covariance to be 
derived. 

Use high resolution models and coarse graining to improve models of model error (e.g. SPPT, 
SKEB) and then use observation based model error estimation techniques to better define the 
variances and correlations of the stochastic fields used in these schemes. 

Improve the feedback loop between model error detection and model improvement.  



Model parameters are known to contain uncertainties within a given model structure. Existing 
forecasting systems should be used to diagnose parametric uncertainties. It is established that 
algorithmic methods can train the model to the desired target to improve deterministic skill 
and provide density estimates for stochastic schemes based on parameter perturbation. 
Special attention should be paid to the formulation of the multi-criteria optimization targets. 
(Laine et al., 2012; Ollinaho et al., 2013, 2014). 

 

3. What length forecast range is necessary to diagnose the main sources of 
model error? What are the relative roles for assimilation and forecast systems 
in identifying model error? 

 
There was a consensus that short forecast ranges are very useful to diagnose model error, 
and hence there is a natural coming-together of data-assimilation and forecasting techniques. 
However, issues associated with the very first forecast timestep having a different structure to 
the subsequent timesteps can complicate the identification of model error and the attribution 
of its systematic component. When forecasts are initialized with “alien” analyses, spin-up 
issues can further obscure the model error (Klocke and Rodwell, 2014) and so, for such 
diagnoses, it is important to initialize a forecast from an analysis produced with the same 
model. 

Some coupled processes (associated with the ocean, land-surface, sea-ice etc.) may be too slow 
to be seen at atmospheric data assimilation timescales but can later lead to large systematic 
errors. Assessment of the systematic and random aspects of such errors must, therefore, involve 
longer timescales, with good short-range forecast reliability being an important pre-requisite. 
There are, however, coupled processes (associated with surface fluxes and upwelling etc.) that 
are diagnosable at short timescales, and more focus on these aspects would be useful. 
Understanding bias differences in coupled and uncoupled mode could be a useful approach. 
Researchers could also use the opportunity of upcoming field experiments to reduce systematic 
error and improve model uncertainty representation (e.g. in polar regions where mesoscale 
uncertainty is large at the sea-ice edge). 

For regional models, research could focus on model error aspects that evolve independently of 
the large-scale boundary conditions. The poorer ability to use observational information (with 
relatively less in-situ data, and difficulties in using remotely-sensed data such as from radar) and 
the increased degrees of freedom in regional models might make this task more challenging than 
for global models. 

 
4. Can we separate errors that are truly random from errors that have complex but 

systematic dependencies on flow/regimes? 
 

Model error varies between different flow conditions, depending for example on how well the 
large-scale flow constrains the small scales. It is valuable to diagnose model errors in these 
different conditions separately, to give more information about how to improve the model and to 
produce a more informative estimate of the model error. This has been done by compositing data 
from locations and periods when a particular regime is in place, for example troughs over the US 
(Rodwell 2015), and then performing diagnosis of the model error. There are many possible large-
scale regimes in different locations where model uncertainty associated with small-scale physics 
could be examined e.g. MJO phases, European blocks. Tropical cyclones could also be studied. 
Possible methods are to examine the EDA reliability budget (see talk by Mark Rodwell) or the 
statistics of analysis increments (see talk by Chiara Piccolo) in each regime. The latter can be 
compared with the predictions of stochastic physics schemes, or could be applied directly in an 



ensemble forecast. Selecting points based on the activity of physics schemes may also give useful 
information – for example, whether the assumption of SPPT that the standard deviation of model 
error is proportional to the total physics tendency is justified. 

One way to diagnose flow-dependent model perturbations which relates to an “error of the day” 
is to apply an adjoint technique extended to diagnose optimal model tendency perturbations 
rather than initial state perturbations (e.g. Barkmeijer et al., 2003; Iversen et al., 2008). There is 
code in the IFS for this, which needs to be updated for use. The method can be extended to the 
non-linear range and to time-variable structures. The method can be used both to diagnose 
model perturbations for given actual model prediction errors in a pre-defined domain, and to 
improve the actual forecast. 

 
5. What are the appropriate metrics for model error: RMSE and bias, ensemble error and 

spread, reliability, probabilistic scores…? 
 

The aim of a model error representation is that, when it is included in the model and the 
model is run in an ensemble, we get a good quality ensemble. In addition also for the use in 
data assimilation, it should be able to reproduce the correct variance and correlation 
structure of the model error. 

The ensemble quality can be assessed by standard measures. These can be supplemented by 
noted that verification against a randomly chosen member of the ensemble of analyses is 
equivalent to verification against the truth (Bowler et al 2015).  In order to assess the model error 
representation within it we need to ensure that the resolution of the ensemble is not 
compromised. This requires measures of the RMSE and bias of the ensemble mean. We also need 
to ensure that the ensemble is reliable. It is important to include more complete measures of 
reliability, such as minimum spanning trees or other multivariate techniques in the verification. If 
the model is to be used for extended predictions we need to assess the impact on conservation 
properties of the model. For global models it can be sufficient to use the standard variables for 
verification. On the other hand, for limited area models it is very important to measure the error 
of parameters that affect the users most, e.g. reliability of precipitation, 2m temperature and 
cloud forecasts. 

In order to assess the correlation structure of the model error we can again use the minimum 
spanning tree or other multivariate techniques. Furthermore, to confirm if sufficient state 
dependency has been achieved one needs to look at case to case variations of variances and non-
isotropic correlation structures. 
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  Report from Working Group 3 
 
What are the pros/cons of existing model uncertainty schemes and how should these be 
measured? 

Group Members 

Carolyn Reynolds (chair), Martin Leutbecher (co-chair), Lauriane Batté, Shuyi Chen, 
Hannah Christensen, Christina Klasa, Philip Pegion, Bob Plant, Laure Raynaud, Nigel Roberts, 
Irina Sandu, Andrew Singleton, Matthias Sommer, Richard Swinbank, Warren Tennant, 
Susanne Theis. 

WG3 discussed both the pros and cons of existing schemes as well as metrics to measure relative 
advantages and disadvantages. We first provide a list of the current operational techniques and 
their respective advantages and disadvantages that were discussed in the WG. We do not claim 
that the list is complete, and we note that the pros and cons are neither exhaustive nor 
quantitative. Nevertheless, it may be useful to note the WG’s consensus on the general 
advantages and disadvantages of the most commonly-used schemes. We then list our 
recommendations for evaluating model uncertainty schemes. At the end is a short list pertaining 
to recommendations for further development of methods to represent model uncertainty. 

Pros and Cons of Existing Schemes: 
 
1. Stochastically Perturbed Parameterization Tendencies: SPPT is effective in generating 

ensemble spread, inexpensive, and respects the balance between parameterizations. On the 
other hand, it is not directly tied to physical processes and violates conservation laws, cannot 
represent uncertainty when tendencies vanish, and cannot change the vertical distribution of 
heating, although recent developments such as independent SPPT (iSPPT) can address some 
of these issues. 

2. Backscatter Schemes such as Stochastic Kinetic Energy Backscatter (SKEB) and Stochastic 
Convective Backscatter: An advantage is that these schemes are designed to represent 
missing physical processes. However, there is an apparent inconsistency between the scales 
of forcing that are effective at generating ensemble spread, and the scales of the phenomena 
for which the schemes are designed to compensate. There are also issues concerning the 
dissipation calculations. Another potential disadvantage is that the schemes become more 
expensive and less relevant as resolution is increased. 

3. Additive perturbations (increment based methods): These perturbations are obtained using 
an objective measure of model error from the data assimilation system, and can be effective 
in generating ensemble spread. However, they are not flow-dependent, are not based on 
physical understanding, and are a function of the observing network and data assimilation 
systems. 

4. Multi-model/ multi physics techniques: The advantages of these techniques are that each 
member is physically consistent, and the techniques are pragmatic and can allow for the 
leveraging of efforts at different institutions. However, the members are 



non-exchangeable and will have different biases, necessitating larger reforecast sets for post-
processing. Other concerns include nonphysical clustering, discrete sampling, and increased 
maintenance. 

5. Stochastic parameterization methods: Convection schemes such as the Plant-Craig scheme, 
multi-cloud schemes, and some methods based on eddy diffusivity/ mass flux (EDMF) schemes 
are advantageous in that they are designed to address specific physical uncertainties. Some of 
these methods also have the capacity to be naturally adaptive to resolution, which should 
reduce the need for tuning. However, they are applied at the grid scale and so do not address 
important upscaling issues, there are potential coding complexities, and certain schemes have 
been tuned to perform well in certain regions (e.g., the multi-cloud scheme has been developed 
for the tropics). Cellular Automata (CA) schemes do have a non-local component, can result in 
convection in new areas, and may help with grey-zone issues. However, it appears somewhat 
difficult to control CA structures. It was noted that newly developed parameterizations (e.g., for 
radiation, gravity wave drag) were increasingly including intrinsic stochastic components, but 
the purpose of these components has often been for cost savings rather than sampling model 
uncertainty, and the stochastic forcing is uncorrelated in space, which limits impact. 

6. Perturbed parameters: These methods have the advantage of being process-related (they 
should ideally reflect expert opinion on parameter uncertainty). A disadvantage is that they can 
be relatively costly to develop and maintain as parameterizations are frequently upgraded. 

7. Post-processing: Post-processing and calibration can provide substantial benefit in terms of 
ensemble forecast performance measures and may be used as a benchmark for the 
development of model uncertainty schemes, provided that reanalyses and reforecasts are 
available. However, post-processing techniques often do not maintain physical consistency. The 
consistency may be relevant to generate outputs targeted to applications. 

Primary Recommendations for Evaluation Methods: 
 

WG3 discussed ways of measuring benefits and deficiencies of schemes to represent model 
uncertainty. The outcome of the discussion is a list of recommendations for measures to consider 
beyond the standard suite of metrics currently used in the verification of ensemble forecasts. Our 
primary recommendations are listed first, followed by a list of additional, secondary 
recommendations. 

1. WG3 recommends evaluating the impact of stochastic forcing on the model behavior, for 
instance the impact on the bias or the impact on the frequency of extremes in the model 
climate. Testing weather models in the extended range and in climate simulations is an efficient 
way to identify problems with biases, variability, and extreme event frequencies. As 
summarizing scores can be insensitive to unrealistic extremes in the predicted distribution, it 
was recommended to quantify the impact of schemes on model climatology for extreme events. 
WG3 noted that increases in the RMS errors of single forecasts may arise from stochastic forcing 
but they can be expected and do not imply that a method is not beneficial in an ensemble 
forecasting framework.  



2. WG3 recommends examining the perturbations that schemes introduce to the model 
tendencies. This can be seen as a first step towards an objective comparison of model 
uncertainty representations. Documenting the ensemble variance and structure of the tendency 
perturbations associated with a model uncertainty representation is expected to  help 
understanding differences between different schemes in the same model as well as differences 
between the same types of schemes in different models. 

3. WG3 noted that variations between the perceived effectiveness of different schemes could be 
due to different configurations of the schemes (potentially due to tuning) and differences in the 
initial perturbations for the ensemble forecasts. For these reasons, one should not assume that 
small impact in one forecast system will imply small impact in other forecast systems. 

4. WG3 suggests evaluating the impact of stochastic perturbations with process-based verification. 

Examples include those used in multi-model evaluations of the MJO1 and the verification of 
tropical cyclones. 

5. WG3 recommends evaluating the reliability of local (in space and/or time) variations in ensemble 
spread. It is important to not rely exclusively on the (global or regional) average agreement 
between ensemble spread and the error of the ensemble mean forecast. 

6. WG3 recommends evaluating how model uncertainty schemes impact background error 
covariance estimates, and model error covariance estimates (for weak-constraint 4D- Var), as 
this will affect the structure of DA increments. 

7. WG3 recommends consideration of spatial verification techniques to enhance the evaluation of 
meteorological entities with large spatial uncertainty compared to the scale of the entities 
themselves (e.g. precipitation rates or fog in convective scale ensembles, or frontal rain in 
medium-range weather forecasts). Upscaling, neighbourhood approaches, and approaches that 
consider displacement uncertainty are examples. 

 
Additional Recommendations for Evaluation Methods: 

 
8. WG3 noted that case studies and/or regime dependent studies together with subjective 

verification are also needed. However, one has to be aware of the forecaster’s dilemma when 
interpreting a sample of cases that is conditioned on particular observed events (see 
http://arxiv.org/abs/1512.09244). 

 
1 For example, see Klingaman, N. P., et al. (2015), Vertical structure and physical processes of the 
Madden- Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening, J. 
Geophys. Res. Atmos., 120, 4690–4717, doi:10.1002/2014JD022374. 

http://arxiv.org/abs/1512.09244)


9. One should assess the impact of model uncertainty applied in one component of the system on 
the other system components. This is relevant within atmospheric modeling (e.g, the impact of 
stochastic forcing in one parameterization on other parameterizations) and within the broader 
context of coupled modeling (e.g., the impact of atmospheric model uncertainty on ocean 
performance). 

10. WG3 noted the potential for ambiguities when specifying sources of model uncertainties with 
multiple schemes in one system. It was recommended to test methods independently and to 
use caution as deficiencies in one scheme may be compensated with perturbations from 
another scheme. 

 
Recommendations for Improvement upon Existing Methods 

 
1. WG3 recommends parameter space exploration research to obtain physically reasonably 

parameter ranges and correlations. Strong communication between parameterization 
developers and ensemble developers is encouraged to facilitate effective and realistic perturbed 
parameter schemes. WG3 also recommends further research into land surface and atmosphere-
surface coupling to identify sensitive parameters, as this should lead to improved ensemble 
forecasts of high-impact near-surface variables. 

2. WG3 agreed that more research in characterizing observation errors would be valuable, as this is 
essential to estimate background error and to verification at early lead times. 

3. WG3 saw the need to consider uncertainty in the model dynamics beyond SKEB. The 
development of schemes may be informed through sensitivity experiments with different 
resolutions (i.e., coarse-graining studies). WG3 also recommends that one should not assume all 
model errors originate from sub-grid-scale variability. 

4. WG3 noted that there was a need for proxies of model error (a topic under consideration in 
another working group) as many model uncertainty schemes require the specification of space 
and time scales for stochastic forcing. An example for obtaining model error proxies is a 
comparison with very high resolution simulations. 
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Weather prediction in a world of uncertainties: should ensembles 
simulate the effect of model approximations? 

Roberto Buizza  

ECMWF 
This main topic of this workshop is the simulation of model uncertainties in ensembles 
designed to provide an estimate of the probability distribution function of analyses and 
forecast states. This is the context within which I will discuss the question posed above in this 
short communication. 

Ensembles have proven, so far, to be the most effective way to provide a range of possible 
forecasts, thus complementing information about the most likely state with a confidence level. 
Ensembles, if accurate and reliable, provide more consistent (in time) and valuable information 
than single forecasts. To achieve greatest accuracy and reliability, the operational ensembles 
have been designed to simulate all the ‘most relevant sources’ of forecast error, which can be 
classified broadly as linked to initial condition (ICs) and to model uncertainties. The ICs’ ones are 
due mainly to observations not being geographically uniform and being affected by measurement 
and representativeness errors, and to approximations and simplifications used in data 
assimilation. The model ones are linked to the fact that the equation of motion of the atmospheric 
flow are solved on a finite, discrete grid and include only an approximate description of the real 
physical processes. 

In the early days on ensemble prediction (1980s and early 1990s), attention focused mainly on 
the simulation of ICs’ uncertainties. In 1995, the Canadian global, medium-range ensemble was 
the first to include model uncertainties (Houtekamer et al, 1996, MWR 124). At ECMWF, the first 
stochastic scheme designed to simulate model uncertainties was implemented in 1999 (Buizza et 
al, 1999, QJRMS 125). Results from these two centres indicated that simulating model 
uncertainties was beneficial and improved accuracy and reliability. Following their examples, 
most of the operational ensembles have included model uncertainty schemes. Today, at ECMWF, 
two stochastic schemes are used to simulate model uncertainties: the Stochastically Perturbed 
Parameterized Tendencies (SPPT), an improved version of the original scheme with 
perturbations with up to 3 different scales, and the Stochastic Kinetic Energy Backscatter (SKEB) 
schemes (Palmer et al, 2007, ECMWF TM 540). 

Following the Canadian example, since about 10 years ago ECMWF has been using ensembles 
also to estimate analyses’ uncertainties, both for the atmosphere (say the wave-land-
atmosphere) and the ocean. Considering the atmosphere, since 2008 an Ensemble of Data 
Assimilations (EDA; Buizza et al, 2008, QJRMS 134) has been used to give a measure of analysis’ 
uncertainties, to provide flow- dependent background-error statistics to the ECMWF data 
assimilation systems, and to initialize the medium-range/monthly ensemble (ENS). Considering 
the ocean, an ensemble was used to produce the ocean analysis version 3, and is currently used to 
produce the operational Ocean Re-Analysis version 4 (ORAS4; Balmaseda et al, 2013: QJRMS, 
139), which includes 5 members, generated perturbing the surface wind stresses. Also the ORAS4 
ensemble members are used to initialize the ENS forecasts, since each of them is based on a 
coupled ocean-atmosphere model. 

Ideally, the analysis and forecast ensembles should be consistent and have the same 
characteristics, to avoid initialization shocks and to initialize better all scales: the same number of 
members, the same, coupled model, with each forecast starting from one analysis, and with both 
ensembles using the same method to simulate model uncertainties. Full consistency would also 
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allow diagnostics based on the analysis’ ensemble to give us indications on how to improve the 
forecast ensemble, and vice-versa. We have not yet achieved full consistency, but we have been 
working hard to make two of these ensembles as consistent as possible (see Table A). 
Considering the atmosphere component, since March 2016 EDA and ENS use the same model 
version and horizontal resolution, albeit a different number of vertical levels. In terms of model 
uncertainties, the EDA uses a 1-time- scale version of the SPPT scheme, while ENS uses a 3-time-
scale version of SPPT and SKEB. Furthermore, the EDA runs with a 12-hour delay and provides 
ENS only with a set of 25 perturbations (instead of 51 full model state), which are combined with 
the unperturbed high- resolution analysis and the singular vectors to generate the 51 ENS initial 
conditions. For the ocean component, both ORAS4 and ENS use the same version of the NEMO 
model with the same resolution. Ocean model uncertainties are not simulated in either ensemble. 
Finally, there are only 5 ocean analyses that are used to initialize the 51, coupled ENS forecasts. 

 

Operational suites Sources of uncertainty 
Type Hor. Resol. – Vert. levels – Fc length (days) Obs ICs Model 
HRES TCO1279 (~9 km) - L137 – (0-10d) -- -- -- 
H4DV TCO1279 (inner loops TCO255/319/399) - L137 -- -- -- 
EDA 25 members: TCO639 (~18km) - L137 δo -- SPPT(1L) 
ENS 51 members: TCO639 (~18km) - L91 - (0-15d) 

TCO319 (~36km) - L91 - (15-46d) 
- Ocean: NEMO ORCA100z42 

-- 
 

-- 

EDA25+SVs50*Na 

 
ORAS45 

SPPT(3L) + SKEB 
 

-- 
S4 51 members: TL255 (~80km) L91 

- Ocean: NEMO ORCA100z42 
-- 
-- 

SVs 
ORAS45 

SPPT(3L) + SKEB 
-- 

ORAS4 5 members: NEMO ORCA 1 degree and 42 layers – Run with perturbed forcing fields 
Table A. Key characteristics of the ECMWF operational suites: the high-resolution forecast (HRES) and analysis (H4DV), 
the Ensemble of Data Assimilations (EDA), the medium-range/monthly (ENS) and the seasonal system- 4 (S4) ensembles, 
and the ocean analysis ensemble (ORAS4). For the wave-land-atmosphere component (the Integrated Forecasting 
System, IFS), TcoNNN indicates a spectral-triangular truncation NNN with a cubic- octahedral grid; Lxx is the number of 
vertical levels (all suites have the top of the atmosphere at 0.01 hPa). 
Three sources of forecast error are simulated, linked to observations’ errors (simulated in the EDA by perturbing the 
observations), initial-conditions (simulated both in ENS and S4 with two different methods) and model uncertainties. 
ORAS4, the ocean data assimilation, includes 5 members, which are used to initialize ENS and S4. 

 

As part of this workshop, we will be discussing how to progress in the simulation of model 
uncertainties. It is worth recollecting few key recommendations that were made at three 
workshops held at ECMWF in 2005 on ‘The representation of sub-grid scales’, in 2007 on 
‘Ensemble Prediction’, and in 2011 on ‘Model uncertainty’. On diagnostic and evaluation, it was 
recommended to develop a methodology to diagnose the spectral energy transfer, to use coarse-
graining strategies (with a factor of 10 difference in resolution) to determine the statistics that an 
effective stochastic scheme should generate, and to use initial tendencies and analysis increments 
to determine model error statistics. On the physical basis of model uncertainty simulation 
schemes, it was suggested to explore the physical basis of the stochastic schemes, to develop 
physical parameterisations that include explicitly model uncertainty estimations, and to apply 
‘falsification concepts’ (does the model error scheme invalidate physical constraints?) in the 
scientific work. 
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I think that the recommendations listed above are still valid, and I would like to conclude by 
suggesting that we add ‘consistency’ between the analysis and forecast ensembles, as another 
goal to achieve. At ECMWF, last we have recently coupled the NEMO ocean model in ENS from 
day 0 because we have shown that this coupling improves the accuracy and reliability of our 
global, medium-range/monthly ensemble forecasts. Going back to the question that I posed at the 
start of this communication, my answer is affirmative: we should simulate all relevant sources of 
model uncertainties. Furthermore, I suggest that we aim to achieve full consistency and develop 
an Integrated Coupled Analysis and Forecast Ensemble (I-CAFÉ) that includes the same model 
uncertainty scheme(s) in both the coupled (ocean-wave-land-atmosphere to start with) analysis 
and the forecast elements, with forecasts’ initial conditions given by the coupled ensemble of 
analyses. 



 

Physically-based stochastic parameterisation  

George C. Craig 

Meteorological Institute, LMU Munich 

 
Parameterisation of unresolved variability in the atmosphere leads to uncertainty in the 
resolved state of the atmosphere that can often be represented stochastically. Since most 
parameterisations are based on physical understanding of a small-scale process, that 
understanding can be used to describe the stochastic variability. A list of criteria that a 
physically-based stochastic parameterisation should satisfy will be presented, and two 
examples of stochastic parameterisation schemes will be discussed: a deep convection scheme 
(Plant and Craig 2008) and a representation of boundary layer variability (Kober and Craig, in 
review) for convection permitting models. Some comments will be made regarding upscale 
error growth and role of stochastic perturbations in the predictability of weather. 
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Stochastic parametrisation models for GFD  

Darryl D Holm 

Imperial College London, Mathematics Department 
 

In next-generation weather and climate models, stochastic parameterisation should be an 
important element in providing reliable estimates of model uncertainty. A fundamental 
conclusion of Berner, Jung & Palmer [2012] is that 

“a posteriori addition of stochasticity to an already tuned model is simply not viable 
[satisfactory]. This in turn suggests that stochasticity must be incorporated at a very 
basic level within the design of physical process parameterisations and 
improvements to the dynamical core." 

This talk responded to the workshop’s challenge of “How do we improve the physical 
basis for model uncertainty schemes?” It proposed an a priori introduction of stochasticity 
for GFD models at various levels of approximation, by introducing the methodology of 
Holm [2015] as a potential framework for quantifying model transport error. In turn, the 
stochastic representation of model transport error would introduce stochasticity into the 
parameterisations of subgrid scale processes. 
 
This methodology introduces Stochasticity into Partial Differential Equations (SPDEs) for 
the model, via Variational Principles (SVPs), with corresponding implications for Numerical 
Modelling, Stochastic Data Analysis, and Geophysical Fluid Dynamics (SGFD).  The 
motivation for introducing stochasticity was illustrated by comparing the relative 
resolutions of numerical simulations and satellite data for tracers on the surface of the 
ocean; and the methodology was sketched as a series of interconnected hexagons in the 
following Figure. The left and centre panels of the Figure illustrate the difference in scales 
between the numerical resolution and the satellite observations for this problem, e.g., for 
estimating the spread of floating tracers such as plastic containers (or, “rubber duckies”) in 
the Southern Ocean. The rightmost panel in the Figure shows the closely integrated tasks 
in formulating the methodology for stochastic estimation of model transport error. 
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In this methodology, the transport stochasticity is introduced via the correlation 
eigenfunctions for the advection data being analysed, by multiplying each eigenvector of 
the correlation matrix for the tracer data (called an empirical orthogonal function, or 
EOF) with a stochastic amplitude in the Stratonovich sense, and then taking the sum over 
these stochastic products as the deviation from the drift velocity. The drift velocity itself 
is then obtained via the known Hamilton’s variational principal for deterministic fluid 
dynamics, but with variations of the velocity and advected quantities which are 
constrained to satisfy the stochastic EOF approximation of the satellite tracer data. This 
methodology of stochastically constrained variational principles is complementary to the 
customary practice in weather forecasting in which data is assimilated using variational 
principles. However, this proposed methodology is to be used in formulating the model 
for the dynamical core, rather than assimilating the observed data. The task of the 
methodology is to learn from stochastic assimilation of data (tracers) the spatial 
correlation features of the observed advected quantities. These quantities are needed as 
input into a constrained variational principle to derive the stochastic fluid motion 
equations, whose transport will predict statistics such as the variability of the advected 
data which, by constrauction, will be consistent with the observations. 

 
The talk outlined this methodology, then illustrated it by deriving several new stochastic 
GFD models for predicting the evolution of climate and weather variability, based on 
observations of tracer data. The new feature of these potential dynamical core motion 
equations is that they contain stochastic perturbations which multiply both the solution 
velocity and its spatial gradient. Remarkably, these stochastic GFD models still preserve 
fundamental fluid properties such as Kelvin's circulation theorem and PV conservation. 
Indeed, as illustrated by the Kelvin circulation theorem for three-dimensional 
incompressible stochastic fluid motion, these fundamental mathematical structures in 
fluid dynamics retain their deterministic forms. However, their transport velocities are 
augmented by advection along the stochastic Lagrangian particle paths obtained from the 
spatial correlations of the tracer data. As a mathematical bonus, the equivalent Ito forms 
of these Stratonovich equations contain symmetric, second-order, derivative operators 
which tend to regularize the solutions of the new stochastic GFD equations, without any 
additional viscosity. This is apparently because the stochasticity in these new motion 
equations multiplies the gradients of the solutions, so its effects are enhanced in the 
vicinity of strong gradients during the evolution of the flow. 

 
The areas of relevance of the new approach in matters of potential interest for ECMWF are: 
(A) New stochastic parameterisation models for GFD derived using variational methods; 
(B) Mathematical analysis of the stochastic transport equations in these models; 
(C) Development of numerical methodology for stochastic GFD; 
(D) Stochastic data assimilation using nonlinear particle filtering. 

 
Key references: 

 
J. Berner, T. Jung and T. N. Palmer [2012] Systematic Model Error: The Impact of Increased 
Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations, Journal of 
Climate, 25: 4946--4962. 

 
D. D. Holm, [2015] Variational Principles for Stochastic Fluid Dynamics, Proc Roy Soc A, 471: 
20140963. 
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Mesoscale convective systems as a source of model error 

Glenn Shutts 

Met Office, UK 

 
In the search for the dominant sources of systematic and random model error, high model 
resolution datasets and satellite imagery are highlighted as particularly useful tools. With the 
recent introduction of simulated infra-red (IR) radiance to global operational model forecast 
diagnostics, direct comparison with the corresponding satellite product gives a new way of 
assessing model error. Typically, the simulated IR over the North Atlantic ocean and Europe 
shows impressive agreement with actual imagery, apart from textual differences that reflect the 
higher resolution of the satellite data. However, in spring and early summer in particular, the 
extent, brightness temperature and location of upper cloud over the United States and the 
Caribbean often exhibit large errors due to the explosive growth of mesoscale convective 
systems (MCS) for which the assumptions of convection parametrization schemes are not 
strictly valid. Furthermore, these major convective events often occur in baroclinic 
environments close to jetstreams and their effect on the meso- to synoptic scale potential 
vorticity field can influence downstream Atlantic cyclogenesis. 

Simulated IR images from 2.2 km forecasts with the Met Office Unified Model (UM), in which 
convection is explicitly represented, appear to show much more realistic representations of 
MCS cloud shields although the MCSs are often too intense and sometimes triggered spuriously. 

This presentation shows examples of simulated IR versus actual brightness temperature and for 
one case that was well-simulated by the 2.2 km UM, model winds and potential vorticity are 
computed. Divergent winds within the cloud shield carry low potential vorticity away from the 
updraught cores and attempts are made to compute the mean absolute vorticity for different 
specifications of the cloud shield in terms of brightness temperature. In addition to these quasi- 
operational high resolution forecasts, idealized simulations of mesoscale convective events are 
made with the Met Office Large Eddy Model with a view to better understanding their impact on 
the mesoscale vorticity field. 

The ultimate goal of these studies is to quantify the likely random model vorticity and 
divergence errors associated with MCSs and relate these to, and improve, the formulation of the 
Stochastic Convective Backscatter scheme (Shutts, 2015). 
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A weather-system perspective on forecast errors 
 
Heini Wernli 
 
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland 
 
This presentation investigates the linkage between forecast errors and specific weather systems 
and contributes to addressing the following questions: (i) How well can NWP models represent and 
predict certain weather systems (e.g., the track and intensity of a cyclone or the lifecycle of a Rossby 
wave?), and (ii) Are there specific weather systems involved in situations where fore- casts errors 
are large? 

In a first part (slides 3-12), a brief overview is given on previous studies quantifying the 
quality of forecasts of specific weather systems, i.e., tropical cyclones, extratropical cyclones, and 
Rossby waves (troughs and ridges). The results indicate a general improvement of forecasts during 
the last decades, the occurrence of cases with still large forecast errors, and a systematic tendencies 
of medium-range NWP forecasts to underestimate Rossby wave amplitudes, which is likely due to 
an underrepresentation of diabatic modification and transport of air from the lower troposphere 
into upper tropospheric ridges (Gray et al. 2014). 

The presentation then focuses specifically on so-called warm conveyor belts (WCBs) – 
coherent airstreams in extratropical cyclones, which produce intense precipitation, latent heating, 
and lead to a net transport of low potential vorticity (PV) air into upper-level ridges. WCBs can be 
identified objectively by calculating air parcel trajectories and selecting those that ascend by more 
than 600 hPa in 48 h in the vicinity of a cyclone (e.g., Joos and Wernli 2012). Compared to 
climatology, the outflow regions near the jet stream of these WCBs constitute strong negative  PV 
anomalies (Madonna et al. 2014), which can significantly affect the downstream flow evolu- tion 
and, in certain cases, contribute to the formation of blocking (Pfahl et al. 2015). A specific PAL 
verification technique is then briefly introduced to quantify three aspects of the quality of WCB 
forecast: A, the amplitude of the WCB (number of strongly ascending trajectories); L, the location of 
the WCB outflow; and P, the amplitude of the associated upper-level negative PV anomaly 
(Madonna et al. 2015). It is shown that (i) all three components of WCB forecast errors increase 
with forecast lead time (slides 18,19), (ii) WCB forecasts of the high-resolution IFS im- proved over 
the last 15 years (slide 20), (iii) in today’s forecast system no systematic over- or underprediction 
of WCB intensity occurs, and (iv) poor forecasts with a low anomaly correlation coefficients (ACC) 
are also associated with high values of PAL (red circles on slide 19). Finally, first results are shown 
from an ongoing master thesis project at ETH, in which WCBs are inves- tigated in ECMWF 
ensemble forecasts. The Brier skill score for the occurrence of WCBs over the North Atlantic 
indicates fairly high values for 2-day forecasts (BSS > 0.5) and clearly re- duced values for 5-day 
forecasts in particular in a band near 45ºN (BSS < 0.3, slide 23). 

The final part of the presentation addresses the underlying meteorology of selected fore- 
cast bust events. Martinez-Alvarado et al. (2016) pointed to the importance of WCBs for correct- ly 
forecasting a high-amplitude Rossby wave evolution. Rodwell et al. (2013) also emphasized 
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diabatic processes, in this case, MCSs over the eastern US, for European forecast busts (see also 
presentation at the workshop by Glenn Shutts on forecast errors induced by MCSs). Slides 27-50 
then show preliminary results from an investigation of a forecast bust in October 2013. The ACC 
over Europe dropped below 0.2 at forecast day 5, leading to a too zonal flow in the forecast in- 
stead of a strong northerly flow in the analysis, which brought the first cold spell to Switzerland in 
2013. Reasons for this poor forecast were (i) a slight mismatch in representation of a WCB over the 
eastern North Pacific, (ii) subsequently a missed reabsorption of an upper-level PV cut- off over 
North America (slide 41), and (iii) resulting from this a too weak Rossby wave amplifi- cation over 
the North Atlantic. Very interestingly, in this case the question whether a pre-existing PV cutoff is 
reabsorbed or not (a strongly non-linear process!) plays a crucial role for the down- stream flow 
evolution. Systematically, the 10 best (worst) ensemble forecasts did (not) reabsorb the cutoff 
(slides 48,49) and this went along with a systematic shift of the upstream WCB out- flow (slide 50). 
 

In summary, this presentation tried to emphasize the following aspects: 
1) It is meaningful to look at forecast errors from a weather system perspective. This requires 

the development of specific algorithms and metrics, which as a drawback involve some sub- 
jective decisions (e.g., what field should be taken to identify a cyclone?) and thresholds (e.g., 
what is the minimum lifetime of a cyclone?). 

2) Research during the last years produced several promising results and emphasized the key 
role of the interaction of moist diabatic processes and the larger-scale flow evolution (e.g., 
role of latent heating in WCBs for evolution of cyclones and upper-level Rossby waves). It is 
likely that in certain cases deficiencies in the model physics negatively impact forecast quali- 
ty, typically on the medium-range and downstream of the main diabatic activity. 

3) Much needs to be done to more systematically investigate this pathway of research and to 
specifically identify critical aspects of model physics and its large-scale flow interaction. 

 
Acknowledgements: Many thanks to my colleagues, in particular Maxi Boettcher, Christian 
Grams, Hanna Joos, and Erica Madonna for their input to this presentation. 
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Resolved and parametrised energy cascades in the IFS 

Sylvie Malardel and Nils Wedi 

ECMWF 

 
Spectral energy budgets following the method proposed by Augier and Lindborg (2013) have 
been used to illustrate how physical parametrisations influence the energy spectra and the non-
linear energy transfer across scales in the IFS. 

Simulations with increasing complexity show that the surface drag and the vertical subgrid 
mixing of momentum in the boundary layer have a strong control on the non-linear energy 
transfers of both kinetic energy and available potential energy and that they influence the shape 
of the energy spectra. 

Spectral analyses of the tendencies issued from the parametrisations show that the physical 
parametrisations act at all scales. Simulations with explicit convection also suggest that the 
convection parametrisation disable natural energy transfers across scales and replace them by 
direct and adjustable forcing at all scales. By comparing the spectral diagnostics for model 
simulations with different complexity and by comparing different modelling choices, an attempt 
is made to assess model error behaviour. 

Malardel, S., and N. P. Wedi (2016), How does subgrid-scale parametrisation influence nonlinear 
spectral energy fluxes in global NWP models?, J. Geophys. Res. Atmos., 121, 
doi:10.1002/2015JD023970 

 

 



  

Diagnosing and representing model error in 4DVar  

Katherine Howes, Dr Amos Lawless, Dr Alison Fowler 

University of Reading 

Four dimensional variational data assimilation (4DVar) can be used to obtain the best estimate 
of the initial conditions of a weather forecast model, namely the analysis. Our work is focused 
on improving the analysis by allowing for the fact that the model contains error, without 
requiring prior knowledge about the model error statistics. 
 
The 4DVar method developed acknowledges the presence of random error in the model at each 
time step, by replacing the observation error covariance matrix with an error covariance matrix 
that includes both observation error statistics and model error statistics. A method for 
estimating this matrix is presented. In summary this combined observation error and model 
error covariance matrix is estimated with ‘Dezrosiers-type diagnostics’ that account for the 
presence of random error in a model.  
 
We present analytical results for an erroneous scalar model which show a decrease in the 
variance of the error in the analysis when using our new method. We show that the 
improvement the method can make to the accuracy of the analysis is dependent on both the size 
of the model error and on the ratio between the observation error variance and background 
error variance. We then further demonstrate numerically that the new method also works to 
reduce the analysis error covariance when using a non-linear chaotic system with random error 
present. We discuss the fact that an improved analysis will not necessarily provide a better 
forecast. 
 

 



Jacky Goddard and Mike Fisher - ECMWF
Currently the operational implementation of 4D-Var at ECMWF uses strong-constraint 4D-Var [4][5][7]. 
Strong-constraint 4D-Var relies on the assumption that the numerical model’s representation of the evolution 
of atmospheric flow is perfect, or at least that the model errors are small enough to be neglected compared 
to other errors in the system [3]. Errors in observations and background state are accounted for using 
the R observation and the B background error covariance matrices. As other aspects of data assimilation 
processes have advanced, the validity of this perfect model assumption becomes more questionable and limits 
the length of the analysis window to roughly 12 hours. Weak-constraint 4D-Var relaxes the perfect model 
assumption by explicitly representing model error as part of the 4D-Var control variable. The model is now 
only a weak constraint on the system. However, a model error covariance matrix is required. Here, a new 
model error covariance matrix based on statistics from parametrised model error schemes is proposed for use 
in the short forecast.

Model Error Formulation

Model error contains both random and systematic (or even constant) components. To simplify the problem 
we consider the model error to be constant by intervals. For the work presented here, the interval we have 
chosen is one constant forcing for the whole 12 hour assimilation window, at the other extreme we could (in 
principle: it is not yet technically possible in the IFS) have chosen to have the interval as short as a model 
time step; this would be the full 4D problem.
The 4d-Var cost function we are considering is:

J(x0, η) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
k=0

(Hk(xk)− yk)TR−1
k (Hk(xk)− yk) +

1

2
(η − ηb)TQ−1(η − ηb)

(1)

where ηb is the mean model error, xk is the state at time k with xk =M(xk−1) + η representing the state at
time k resulting from the forced model integration from time t = 0 to t = k, η represents the instantaneous
model error. Observations and model error are assumed uncorrelated in time.[6]

Calculation of model error covariance matrix (Q)

In order to calculate the new Q matrix, statistics are generated from special runs of the Ensemble Prediction
System (EPS) in which initial perturbations are removed. In these runs, members diverge from each other
due to their different realisations of parametrised model error (SKEB and SPPT). The differences between
members after 12 hours of model integration give an estimate of the integrated effect of model error over
12 hours; from which statistics appropriate for use in 4D-Var can be calculated. These statistics are used
to construct a covariance model similar to that described by Derber and Bouttier [1] for background error
covariances. (Note, however, that the model error covariance matrix we have constructed does not include
a balance operator: model errors for different variables are assumed to be uncorrelated.) This method of
generating model error covariance statistics provides greater consistency between the approaches taken to
representing model error in the 4D-Var and EPS systems than previous methods.

EPS experiment description:

• 50 member ensemble + control;

• TL 399 resolution;

• 12 hour forecast;

• cycle 40R3;

• 20 days of forecasts (2013083100 - 2013091900);

• identical initial conditions (ensemble members are not perturbed).

1

Estimate of model error covariance Q for weak-constraint 4D-Var



Initial experimentation using the new Q matrix suggested that the implied variances of model error were too
large. Weak-constraint analyses using the matrix were found to have very small initial increments as 4d-Var
found it less costly to nudge the state towards the solution via a model-error correction than to correct the
initial state. In order to select a reasonable magnitude of the Q matrix we looked at the minimisation of the
cost function for a range of different values of multiplicative factors between 0 and 1 and choose a value for
which the model error Q term has an influence but does not dominate over the other error terms.

For the multiplicative factor value chosen (α = 0.2), a 4D-Var weak-constraint assimilation experiment was
run. The 4D-Var model error estimates η from this experiment were then used to calculate a covariance
matrix that could be compared with the Q matrix used in the assimilation. The experiment was run for 90
days with 12-hour assimilation windows starting at 0900 and 2100; both times were used for calculating the
model error covariance estimates.
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Figure 1: Divergence model error average vertical correlations for 12 hour stochastic model error and weak-
constraint 4D-Var model error estimate. Contour interval is 0.1 for both figures.

In fig. 1 we see the average vertical correlations of estimated model error for divergence. The 4D-Var weak-
constraint model error covariance estimate (right panel) does not retain the same structure as the stochastic
model error covariance, Q (left panel). In particular, we see some unexpected correlations between levels
that are far apart.
By looking at the geographical location of these correlations we saw a clear pattern over North America
and Europe corresponding to areas with a high number of aircraft observations. This suggests that 4D-Var
is misinterpreting aircraft observation error or bias as model error. In order to avoid this interaction with
aircraft observations, subsequent experiments restricted the effect of model error to be active only above
100hPa.
A CY41R2 Tco1279 experiment was run. Forecast skill scores were verified against own analysis and also
against GPS Radio Occultation (GPSRO) observations. The verification against own analysis in the northern
hemisphere (fig. 2) showed a significant reduction in RMS error at 100hPa. GPSRO verification in the
stratosphere showed a change in the bias structure throughout the forecast. In the northern hemisphere bias
is slightly improved at all levels, in the tropics it is largely unchanged and in the southern hemisphere the
results are mixed (but the differences from the control in this region are very small).
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Figure 2: GPSRO verification northern hemisphere

We hope to introduce this configuration of weak-constraint 4D-Var with model error forcing above 100hPa
into CY43R1. Understanding and reducing aliasing of observation error is critical to plans to extend the
model error representation to all model levels, and will require improvements to the representation of sys-
tematic observation error (in particular biases in aircraft data). Finally, we plan to extend our research to
encompass the random component of model error once the technical facility to represent it in 4d-Var exists.
For this, we rely on ongoing developments within the OOPS project.
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[6] Mike Fisher, Yannick Trémolet, Harri Auvinen, David Tan and Paul Poli, Weak-Constraint and Long-
Window 4D-Var. Research Department Memorandum, RD-655, December 2011.

[7] Klinker E, Rabier F, Kelly G, Mahfouf JF. (2000) The ECMWF operational implementation of fourdimen-
sional variational assimilation. III: Experimental results and diagnostics with operational configuration.
Q.J.R. Meteorol. Soc., Apr 1;126(564):1191-215.

4



Evaluation of model error using data assimilation
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The principles of initiating an ensemble forecst (EPS) with ensemble data
assimilation (EnDA) are reviewed. This allows an estimate of initial uncer-
tainty consistent with the uncertainties due to the model and the available
present and past observations. Maximum resolution of the EPS is achieved
by using the best available and affordable deterministic model. Achieving
reliability then requires an estimate of the errors in the deterministic model.
The true state in model space is filtered to the model resolution. This means
that the true evolution is stochastic, as it depends on information that is not
present in the initial state. The error in a deterministic model is therefore
also stochastic.

If the statistics of the model error are known, then a reliable forecast
ensemble can be generated given a reliable analysis ensemble. In particular,
a reliable prior ensemble can be generated for the next analysis cycle. If
the statistics of the observation errors are also known, and represented by
perturbed observations, then an analysis ensemble performed by updating
a randomly chosen prior ensemble member using a random draw from the
perturbed observations will also be reliable. This is because the true state is
statistically indistinguishable from a random member of the prior ensemble,
and the true state mapped to observation space is statistically indistinguish-
able from a randomly chosen set of perturbed observations. Thus no update
is performed at the true state, and so the reliability of the analysis ensemble
is assured whatever method of analysis update is used, and whether or not
the statistics are Gaussian.

Since the model error is inherently unknowable a priori because it de-
pends on unknown information, the statistics of model error can only be
estimated from observations. Data assimilation provides a way of doing this
which allows all observations to be used while properly allowing for obser-
vation error. Ideally this should take the form of a reanalysis. The weak
constraint 4dVar method is designed to estimate the forcing term with the
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minimum variance which, when included in the model, allows the model to
fit the observations to within observation error over an extended period. We
can infer the statistics of the necessary forcing term by performing cycled
weak constraint 4dVar with no background increments. This can only give
the statistics of the model error over a sufficiently long period for the data
assimilation to be fully spun up. It requires a prior estimate of the model
error statistics, which should ideally be bootstrapped. If the forcing terms
estimated from the assimilation can be regarded as a random draw from
an archive of such increments, then the reanalysis trajectory will be staisti-
cally indistinguishable from a model trajectory forced with randomly chosen
increments from the archive.

This idea is tested using the Met Office Unified Model with 40km hori-
zontal resolution and 70 levels. An archive of model error forcing terms is
generated using weak constraint 4dVar with no background term. An en-
semble data assimilation and forecast system is then run with 10 members,
perturbed observations, and strong constraint 4dVar. Randomly chosen
model error forcing terms from the archive are added to the model trajec-
tories. 6 hour forecasts from the system are then verified against randomly
chosen members of the analysis ensemble. This is equivalent to verifying
against the truth if the analysis is properly set up. The spread-skill relation
is satisfied to within sampling error.

Results are presented for 6 day forecasts, which are found to be reli-
able based on the spread-skill relation. They are also presented for 10 year
AMIP simulations verified against ERA-Interim analyses. These show large
improvements over the control, primarily because the systematic errors are
removed by the forcing terms. Some of the remaining errors are because our
simulations should reproduce a Met Office reanalysis, which will not be the
same as ERA-Interim due to differences in the two assimilation systems.

Additional results are presented which show that our system, when used
only in forecast mode, outperforms the Met Office operational EPS. This
is because the model error forcing is significant in all regions, while the
stochastic physics used in the operational EPS is mostly restricted to the
storm tracks. We also illustrate that the use of weak constraint 4dVar to
estimate the model error forcing is important. Analysis increments calcu-
lated on the assumption that increments are only added every 6 hours are
different in character, typically smaller and on smaller scales.

C. Piccolo and M.J.P. Cullen (2016) Ensemble Data Assimilation Using
a Unified Representation of Model Error. Mon. Weather Rev.,144, 213-224

.
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Diagnosing systematic numerical weather prediction model bias 
over the Antarctic from short-term forecast tendencies 

Steven M. Cavallo 

University of Oklahoma School of Meteorology, Norman, OK 
 

The Antarctic Mesoscale Prediction System (AMPS) is a derivative of the Advanced 
Research Weather Research and Forecasting (ARW-WRF) limited area model (LAM), with 
modifications in physics parameterizations aimed to improve polar prediction (Powers et al. 
2003). AMPS forecasts are a single deterministic realization initialized using   a 3DVAR 
method employed from a Global Forecasting System (GFS) analysis. Data assimilation is not 
continuously cycled and AMPS forecasts are initialized from a non-native analysis (a different 
model is used in the data assimilation and the forecast). During September-December 2010, the 
Concordiasi intensive observing period (IOP) occurred over the Antarctic and parts of the 
Southern Ocean, where unique vertical atmospheric profiles were collected from dropsondes 
that were deployed from driftsondes within the Southern Hemisphere polar vortex (Rabier et 
al. 2010). This provided an opportunity to examine systematic model bias in the AMPS LAM, 
where horizontal grid spacing was 45-km at the time of the IOP. This study uses short-
term forecast tendencies to formally diagnose systematic model error for the period 21 
September - 30 September 2010. The hypothesis of this study is that the sources of model 
bias can be diagnosed to the precise physical parameterization and locations using short- 
term forecast tendencies in a method referred to here as the mean initial tendency analysis 
(MITA) increment method (e.g., Klinker and Sardeshmukh 1992; Rodwell and Palmer 2007). 

To minimize initial condition error so that it is statistically distinguishable from model 
error, it is best if the same identically configured model used to create the analysis is used for 
forecasts (e.g., Rodwell and Palmer 2007; Klocke and Rodwell 2014). In these cases, the 
analysis is referred to as a ‘native’ analysis since the same model is used in both the data 
assimilation and forecasts (e.g., Klocke and Rodwell 2014). The departure of the short- term 
forecasts from the observed atmospheric state in the early time steps allows for the 
potential identification of process-level errors, and this growth of errors is often referred to as 
model ‘spin-up’ (Rodwell and Palmer 2007). Thus, the AMPS numerical weather model and an 
Ensemble Adjustment Kalman Filter (EAKF) within the Data Assimilation Research Testbed 
(DART) framework (Anderson et al. 2009) are used here to create a fully cycled atmospheric 
ensemble data assimilation system, which is hereafter referred to as ‘A-DART’ for brevity. 

A one-month control ensemble analysis is created for which DART is identically con- 
figured as in Cavallo et al. (2013) assimilating the following conventional observations: 
Radiosondes, marine buoys, geostationary satellite atmospheric motion vectors (AMVs), 
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METAR, Aircraft Communications Addressing and Reporting System data (ACARS), Au- 
tomatic Weather Stations (AWS), and Global Positioning System (GPS) data. Cavallo et al. 
(2016) previously implemented the MITA increment method over a domain in the tropical 
North Atlantic Ocean with 36-km horizontal grid spacing using the conventional observations 
listed above with the ARW-WRF LAM model. A systematic model bias was diagnosed from the 
planetary boundary layer parameterization scheme, and was found to originate from 
erroneously specified sea surface temperatures (SSTs) over the North Atlantic Ocean. In 
addition, a systematic warm temperature bias in the free-troposphere was found to originate 
from the convective parameterization. 

A large-scale upper-level wind bias is immediately evident in the A-DART control. This bias 
is evident from the analysis increments of wind and is greatest in the 45◦S-60◦S latitude range. 
Comparison of 6-h forecasts to Antarctic radiosonde profiles reveal a strong warm 
temperature bias in upper-levels, everywhere above 300 hPa. In addition to A-DART, this bias 
is apparent in forecasts from both the stand-alone AMPS and the GFS models. Given that 
ARW-WRF and AMPS physical parameterizations do not use a time-varying ozone profile, 
and that this time period exactly coincides with the annual depletion of Antarctic ozone, it is 
first hypothesized that a large-scale upper-level circulation bias is present due to too much 
shortwave heating over the Antarctic continent as a result of erroneously high ozone 
concentrations. Two experiments are then devised to test this hypothesis: (1) Implement 
time-varying, latitude-dependent ozone profiles in the physics, and (2) assimilate AMV data 
from polar-orbiting satellites. Both experiments result in only modest reductions in model 
bias. Therefore, the MITA increment method is then applied to determine where additional 
model bias originates. 

While the MITA increment method has been more commonly used in global models, 
Cavallo et al. (2016) is the only study where it has been applied to a limited area mesoscale 
numerical weather prediction model. They found that analyzing forecast tendencies over 
shorter time intervals can be successful as long as the forecast model has appropriately 
spun-up to represent the mean analysis increment over the 6-h data assimilation cycling 
period, which in their study was sufficient after about 30-minutes. In the present study, this 
was found to be sufficient for forecast tendencies beginning at 1 hour, or 25 model time steps. 

Statistically significant cold temperature biases are found in the boundary layer from 0-4 km 
above ground level (AGL) (700-1000 hPa), and in upper-levels from 10-20 km AGL (20- 300 
hPa). This cold bias is in contrast to the warm bias seen from radiosonde comparisons, 
however, it is noted that radiosonde locations are predominantly located around 60◦S latitude in 
the Antarctic. A decomposition of the forecast tendency components reveals that the upper-
level bias derives from the dynamics and longwave radiation tendencies equatorward of 60◦S 
latitude near the locations of geostationary satellite AMV observations. To test whether the 
geostationary AMV observations are biased, the case is re-cycled with Atmospheric Infrared 
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Sounder (AIRS) satellite retrievals and results in substantially reduced bias. Given the number 
of AIRS retrievals is much greater than the number of AMV observations, it is concluded that 
the geostationary AMVs exhibit a possible wind bias, where the wind from AMVs is too 
strong. Regarding the boundary layer bias, A-DART is again re-cycled to test whether well-
documented cloud-phase errors in polar regions (e.g., Sandvik et al. 2007) contribute to a cold 
mid-tropospheric temperature bias. Model bias is reduced approximately by half, and the 
reduction in bias occurs primarily in the storm-track region over the Southern Ocean and over 
sea ice areas. 
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Using Forecast Temporal Variability to Evaluate Model Behavior  
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We use simple diagnostics to quantify the temporal variability in analyses, 𝑎𝑎𝑖𝑖, and 

forecasts, 𝑓𝑓 , for increasing time differences from i=1, 10 days. In addition, we introduce a 
diagnostic that reflects the day-to-day variability of the forecasts, di, for increasing forecast lead 
time i. In a perfect system, we expect 𝑎𝑎𝑖𝑖 > 𝑓𝑓 , and 𝑎𝑎1 > 𝑑𝑑𝑖𝑖 due to the presence of uncorrelated 
analysis errors. We apply these diagnostics to control and perturbed ensemble initial states and 
forecasts from the NCEP and CMC global ensemble forecasting systems to demonstrate the 
utility of the diagnostics in quantifying aspects of forecast performance related to temporal 
variability. We relate the results to ensemble design and, in the case of CMC, a system upgrade. 

While 𝑎𝑎𝑖𝑖 > 𝑓𝑓𝑖𝑖 and 𝑎𝑎1 > 𝑑𝑑𝑖𝑖 for most NCEP fields, which is expected in a perfect system, 𝑎𝑎𝑖𝑖 
< 𝑓𝑓𝑖𝑖 and 𝑎𝑎1 < 𝑑𝑑𝑖𝑖 for several CMC fields, indicating that the CMC system may have excessive 
temporal variability as compared to the analyses. This is probably due to the excessive smoothing 
of the CMC analyses through the application of a digital filter (since replaced by 4DIAU in the 
deterministic global system as discussed in Buehner et al. 2015, and under development in the 
ensemble system). Trends in 𝑑𝑑𝑖𝑖 illustrate how both the control and perturbed NCEP forecasts 
show a small but steady decrease in day-to-day temporal variability with increasing forecast 
time. In contrast, the CMC control forecasts show increasing temporal variability for temperature 
and humidity during the first few days, illustrating the spin-up of the system after the initial 
excessive digital filter smoothing. 

The diagnostics also clearly reflect the upgrade in the CMC system on 13 February 2013. 
Before the upgrade, 𝑓𝑓𝑖𝑖 was greater than 𝑎𝑎𝑖𝑖 in the tropics for the CMC perturbed ensemble member 
for height, winds and temperature, which is not expected in a perfect system. After the upgrade, 
𝑓𝑓𝑖𝑖 was less than 𝑎𝑎𝑖𝑖 in the tropics for the perturbed member. The trends in 𝑑𝑑𝑖𝑖 for the perturbed 
member also change, remaining fairly constant or increasing before the upgrade, and decreasing 
after the upgrade. These differences are consistent with changes made to the stochastic physics 
perturbations in order to reduce excessive precipitation (Gagnon et al. 2013). 

An advantage of these diagnostics is the ability to assess forecast temporal variability on 
different time scales without the need for very long forecast integrations. For example, the 
locations of the maxima in height field variability shift or extend from the North Atlantic and 
North Pacific jet regions for i=1 downstream to northern Europe and the eastern North Pacific for 
i=10. These shifts are consistent with patterns found in temporal filtering diagnostics of analyses 
time series that differentiate between regions of synoptic variability and blocking (e.g., Blackmon 
et al. 1977; Lau and Nath 1987; Cai and Van Den Dool 1991) using low-pass (>10 d) and band-
pass (7-90 and 8-64 d) filters that could not be applied to the 10-d forecast integrations 
considered here. 
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Diagnostics measuring temporal variability are complementary to other diagnostics, such 
as those that focus on time-mean quantities or model bias (e.g., Klocke and Rodwell, 2014), spatial 
scale separation techniques (e.g., Harris et al. 2001), and techniques to quantify differences 
between forecast fields and reality as represented on the scales resolved by the data assimilation 
and forecast systems (e.g., Peña and Toth 2014). Using diagnostics to assess the accuracy of both 
temporal and spatial variability will become increasingly important as stochastic techniques to 
account for model uncertainty proliferate in ensemble forecasting systems, as both spatial and 
temporal correlations are often parameters in these schemes that need to be tuned. Potential 
future work includes consideration of other forecast systems, as well as an extension to a 
comparison with observations. 

This work has been published in Reynolds, C. A., E. A. Satterfield, and C. H. Bishop, 2015: Using 
forecast temporal variability to evaluate model behavior. Mon. Wea. Rev., 143, 4785- 4804. 
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True model uncertainty is dependent on the instantaneous and local state of the system. To 
assess our representation of model uncertainty it is beneficial, therefore, to focus on the 
ensemble distribution at very short leadtimes. The traditional ‘spread-error relationship’ is not 
suitable for this assessment because, at short leadtimes, uncertainties in our knowledge of the 
truth cannot be ignored in the estimation of the error. Here, therefore, we develop and use a 
consistency relationship that adopts the ideas and terminology of ensemble data assimilation. In 
particular, this relationship decomposes the mean-squared departure of the ensemble-mean 
background forecast (relative to each observation) into a squared-bias term, an ensemble 
variance term and an observation uncertainty term. Any imbalance (or residual) in this budget 
highlights a deficiency of background reliability, and so the budget is known as the ‘EDA 
reliability budget’. Results will be shown that demonstrate that the residual term is sensitive to 
the local and flow-dependent representation of model uncertainty. (It can also be sensitive to 
the modelling of observation error, but this can often be estimated by other means). The hope is, 
therefore, that this budget will facilitate future improvements in the representation of state-
dependent model uncertainty. 
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Stochastic representations of model uncertainties in the IFS 
 
Martin Leutbecher, Pirkka Ollinaho, Sarah-Jane Lock, Simon Lang, 
Peter Bechtold, Anton Beljaars, Alessio Bozzo, Richard Forbes, 
Thomas Haiden, Robin Hogan and Irina Sandu 
 
ECMWF 

 

The operational ensemble forecasts at ECMWF use the stochastic schemes SPPT and 
SKEB to represent model uncertainties. The talk describes the configuration of these 
schemes at ECMWF and shows the impact of the schemes on ensemble spread and 
probabilistic skill. Relative to an ensemble forecast with initial perturbations only, SPPT 
increases the ensemble spread considerably up to about 3 weeks in the extra-tropics 
and beyond 4 weeks in the tropics. The additional spread generated by SKEB is quite 
moderate. The representation of model uncertainties with SPPT+SKEB leads to 
statistically significant reductions of the continuous ranked probability score and even 
more pronounced reductions of the logarithmic score. 

While SPPT is efficient in generating ensemble spread, it is recognised that its current 
formulation lacks physical consistency in several ways: (i) there are no flux 
perturbations at the top of the atmosphere and the surface that are physically consistent 
with the tendency perturbation in the atmospheric column; (ii) SPPT does not conserve 
water; (iii) SPPT includes ad-hoc elements like tapering in the boundary layer or 
stratosphere; (iv) SPPT is unable to represent multi-variate aspects of uncertainties, for 
instance it cannot alter the shape of the heating profile due to convection. 

 
Progress towards the development of a new model uncertainty representation at the 
process-level is also reported. A stochastic scheme embedded within the IFS physics has 
been developed that introduces local stochastic perturbations of parameters and 
variables. The new scheme is referred to as the Stochastically Perturbed 
Parametrisation scheme (SPP). Through its formulation it maintains physical 
consistency in the perturbations and addresses the points (i)-(iv) mentioned above. SPP 
targets uncertainties that are known to matter based on the experience of the scientists 
working on the parameterisation of individual processes. SPP, like SPPT, converges to 
the deterministic IFS physics in the limit of vanishing variance. The current version of 
SPP can sample distributions for up to 20 different parameters and variables in the 
parameterisations of (a) turbulent diffusion and subgrid orographic drag, (b) radiation, 
(c) cloud and large-scale precipitation, and (d) convection. The development started 
from distributions with variances proposed by the scientists working on the 
parameterisations. Sensitivity experiments with modified variances informed decisions 
on adjusting the initial variance estimates. Among the tested variances, the best 
candidate configuration was selected based on increases in ensemble spread and more 
importantly the reduction of ensemble mean RMS error. 
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The different parameters and variables are sampled in SPP using independent random 
patterns with prescribed time and spatial decorrelation scales. The sensitivity to the 
decorrelation scales was tested. Among the scales tested, a configuration with 
decorrelation scales of 2000 km and 72 h resulted in the most skilful medium-range 
predictions. Both smaller scales (500 km and 6 h) as well as infinite scales (globally fixed 
perturbations) resulted in lower ensemble spread and also reduced probabilistic skill. 

In order to better understand the different characteristics of SPPT and SPP, the tendency 
perturbations due to the two schemes have been compared. As expected, SPP generates 
considerable perturbations in the lowest model level in contrast to SPPT. In the free 
troposphere, the tendency perturbations of SPP appear to be more confined to localised 
regions than those of SPPT. Looking at area-averages, SPP generates about the same 
(less) variance in the tendencies perturbations than SPPT in the free troposphere in the 
tropics (in the extratropics) in the first hours of the forecast. However, at longer lead 
times, SPPT generates more variance in the tendencies everywhere except close to the 
surface. 

 
The impact of SPP and SPPT on ensemble forecasts has been examined up to a lead time 
of 32 days. Compared to an experiment with initial perturbations only, both schemes 
significantly increase spread. The additional spread generated by SPP ranges between 
about 0.6 and 1.1 of the additional spread generated by SPPT depending on variable and 
region. SPP also leads to more skilful ensemble forecasts compared to the experiment 
with initial perturbations only. The reductions in CRPS due to SPP range between about 
0.5 and 0.9 of the reductions in CRPS obtained with SPPT. 

 
As part of the development of SPP, its impact on the model climate has been evaluated as 
well. Based on four 13 month integrations RMS errors of annual mean fields have been 
compared for runs with the unperturbed IFS model, with SPPT and with SPP. Relative to 
the run with the unperturbed model, the run with SPP consistently reduces RMS errors 
of the annual mean of a range of fields from tropical winds, precipitation, total column 
water vapour to top-of-the-atmosphere thermal radiation. SPPT also results in 
improvements of the climate but in a less consistent way. For instance, it clearly 
degrades total column water vapour. This is believed to be caused by its lack of humidity 
conservation. 

 
The evaluation of SPP in the Ensemble of Data Assimilations (EDA) is ongoing. Like PPT, 
using SPP results in considerable additional spread in EDA analyses and EDA short- 
range forecasts. Preliminary results show that the additional spread introduced by SPP 
does not decrease towards the surface in the boundary layer as is the case with SPPT. In 
the free troposphere, the spread increase due to SPPT and due to SPP are of a similar 
order of magnitude. 

 
Future extensions to the SPP scheme are envisaged that would address further 
uncertainties in (i) the vertical mixing above the boundary layer, (ii) the thermodynamic 
coupling between surface and atmosphere and (iii) trace gas sources. Future progress 
will also rely on process-oriented diagnostics of ensemble forecasts with the stochastic 
representation of model uncertainties. 
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Model error representation in Météo-France ensemble NWP systems 

Laure Raynaud, M. Boisserie, F. Bouttier, L. Descamps, C. Labadie, Y. Michel 

Météo-France – CNRM/GMAP/RECYF 

A variety of ensemble systems are currently operationally running or under development at 
Météo-France. At the global scale, operational ensemble data assimilation (EDA) and 
ensemble prediction systems (EPS) are based on the Arpège model, while at the convective scale EDA 
and EPS are being developed based on the non-hydrostatic limited- area Arome-France model. 
Experiments with these different systems have shown that the representation of model errors is 
a key aspect, hence appropriate strategies have been implemented in order to account for their 
contribution. We provide in the following paragraphs a short description of the methods used in each 
system. 

The Arpège EDA is an ensemble of perturbed 4D-Var assimilations primarily developed 
to compute flow-dependent background-error covariances for the deterministic 4D-Var 
assimilation. A methodology has been proposed to estimate model-error global contribution from 
diagnostics relative to the minimum of the variational cost function (Raynaud et al., 2012). This 
information is then used to implement a flow-dependent adaptive multiplicative inflation of 
background perturbations after each forecast step. This leads to an increase of the ensemble spread 
by roughly a factor of 2, which improves the consistency of ensemble variance estimates with 
innovation-based estimates. Positive impacts of inflated ensemble covariance estimates on the 
analysis and forecast scores are also observed. 

Perturbed states from the global EDA also provide initial conditions for the Arpège 
EPS (Descamps et al., 2015), which is currently running on a stretched grid with a 10km 
resolution over France. Model error in the EPS is accounted for with the multiphysics approach, 
which is considered to provide a valuable flow-dependent sampling of the uncertainty in the 
physical parametrizations. It is based on ten different physical parametrization sets, including 
the Arpège deterministic physical package, designed from different schemes for turbulence, 
shallow convection, deep convection and for the computation of oceanic fluxes. Scores indicate that 
the multiple parametrization set increases the ensemble spread, especially for 850hPa 
temperature, and also slightly improves the ensemble resolution. 

To complement the global systems, convective-scale ensembles for both assimilation and 
forecasts are currently under development at Météo-France. The near-operational Arome-EPS 
is running with a 2.5km horizontal resolution, and model error is represented with the SPPT 
scheme (Bouttier et al., 2012), which is a limited-area version of the ECMWF scheme. As 
expected, SPPT enhances ensemble spread, especially in the lower troposphere, and it generally 
improves the ensemble performance for the prediction of surface weather variables, as 
measured by the spread-skill relationship and various other probabilistic scores. The SPPT scheme 
is also shown to have a significant impact on rain forecasts, although it does not directly perturb 
condensed water species. On the other hand, the SPPT is shown to produce a drying of the 
lower atmosphere that should be further investigated. 

Finally, preliminary versions of the Arome EDA, running with a 4km horizontal resolution, 
combines this SPPT scheme with a multiplicative inflation of background states to represent 
model error contribution. The impact of this EDA setting is currently being examined regarding 
both the initialization of the Arome-EPS and the estimated ensemble background-error covariances 
then used in the deterministic Arome analysis scheme. 
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The representation of model-error in the ensemble systems of Météo-France is an active area of 
research. While the currently used strategies have significant positive impacts on forecast scores there is 
still room for improvement. Future works will examine the application of the SPPT scheme in the 
Arpège EPS, as a potential replacement for the multiphysics approach which is typically difficult to 
maintain in an operational environment. 

Going from the global SPPT to the independent SPPT scheme (iSPPT) in the Arome-EPS will also be 
considered, based on the preliminary promising results reported with this scheme. More generally, 
future developments regarding model error will focus on more physically-based strategies. 



  

Stochastic Parameterization Development in the NOAA/NCEP 
Global Forecast System 

Philip Pegion1,2, Gary Bates1,2, Maria Gehne1,2, Thomas Hamill1, Walter 
Kolczynski3,4, Jeffrey Whitaker1, and Yuejian Zhu3 

1-NOAA/Earth Science Research Lab, Physics Sciences Division. Boulder, CO 

2- University of Colorado. CIRES Boulder, CO 

3- NOAA/NCEP/Environmental Modeling Center. College Park, MD 

4- I.M. Systems Group. College Park, MD 
The current operational Global Forecast System (GFS) run at the National Centers for 
Environmental Prediction (NCEP) uses very different methods of treating model uncertainty for 
different applications. The short range ensemble that is used for data assimilation (9 hour 
forecasts) incorporates four stochastic parameterization schemes working in concert during the 
9-hour forecast. The medium range ensemble (out to day-16) currently uses an old method 
developed at NCEP that applies random perturbations once every 6-hours and requires all of 
the ensemble members to be able to communicate with each other during the forecast, which 
limits the number of ensemble members that can be run.    
 
There are ongoing projects to put this suite of stochastic parameterizations into the medium 
range forecast, and testing shows a well calibrated ensemble system (ensemble spread matches 
ensemble mean error) for upper-air fields such as 850 hPa Temperature and winds, but there 
are still deficiencies in ensemble spread in sensible weather elements, such as precipitation, and 
2 metre temperature. To remedy this, new methods are currently being tested to address model 
error that is related to the land and sea-surfaces interface with the atmospheric model.   
 
During the development and testing of the stochastic parameterization schemes, we have found 
that the Stochastically Perturbed Parameterization Tendencies Scheme (SPPT) produces a 
positive bias in precipitation, which was opposite to what we expected from the literature, and 
modifications to address this issue will be presented. Plans of integrating stochastic 
parameterizations at the process level of the new physicals being developed for the Next 
Generation Global Predication System (NGGPS) will also be presented.     



Model Error Representation in the Canadian Ensemble Prediction 
Systems 

Leo Separovic1, Martin Charron1, Amin Erfani2, Normand Gagnon2, Ayrton 
Zadra1 and Paul Vaillancourt1  

1Recherche en Prévision Numérique Atmosphérique, Meteorological 
Research Division, Environment and Climate Change Canada, Dorval, 
Quebec, Canada  

2Meteorological Service of Canada, Environment and Climate Change 
Canada, Dorval, Quebec, Canada 

 
State-of-the-art ensemble prediction systems typically use deterministic physical 
parameterisations (single or multiple choices) and ad hoc techniques for sampling uncertainties 
originating from the subgrid-scale processes, truncation and diffusion.  Random perturbations 
of poorly constrained physics parameters, although having potential to improve the skill of 
ensemble prediction systems, may lead to under- or over-dispersive forecasts. Most operational 
centres thus resort to adding perturbations directly to the physics tendencies and applying the 
stochastic kinetic energy backscatter algorithm. While these ad hoc methods are relatively 
simple to apply they are rather unsatisfactory from a more fundamental perspective. In the long 
term, development of inherently stochastic physics appears to be a more appropriate approach 
to represent model errors originating from the unresolved-scale processes.  

In this presentation we will discuss the current methodological approach at Recherche en 
Prévision Numérique Atmosphérique (RPN-A), as well as the most recent developments aimed 
at stochastic parameterisations of physical processes and their application in the ensemble 
prediction. Currently, we are working on stochastic parameterisation of convection based on 
the Plant-Craig (PC) approach applied to the Bechtold convection scheme. The Bechtold scheme 
was modified in order to allow for multiple random plumes of different characteristics, such as 
cloud lifetime and radius at the cloud base, whereas, the plumes’ statistical properties are 
derived from the PC theory. In addition to convection, we are also investigating ways to 
introduce stochasticity in a TKE-based boundary layer scheme.  
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Representing model error in the Met Office convection permitting 
ensemble prediction system 

 
Anne McCabe, Richard Swinbank, Warren Tennant and Adrian Lock 
 
Met Office, UK 

 
Recently, many weather centres have developed ensembles at the convective-scale to provide 
detailed forecasts over regions of particular interest. While these high resolution models are 
able to provide very realistic looking forecasts, there continue to be cases where the observed 
weather has not been captured by the ensemble, and a common complaint of forecasters is 
that the ensemble is over-confident, with the members too similar.  This lack of spread, 
typical of ensemble prediction systems, is at least partly attributed to uncertainty arising 
from the model itself. 

 
At the Met Office, we routinely run a limited-domain convection-resolving ensemble 
prediction system (EPS) over the British Isles, known as MOGREPS-UK. The ensemble 
consists of twelve members (one control and eleven perturbed) and is run out to T+36, every 
6 hours, four times a day. It is widely recognises that a successful EPS should represent all 
forms of uncertainty in the forecast, namely, uncertainty arising from (i) the initial conditions, 
(ii) the boundary conditions, and (iii) the model physics (Buizza et al. 1999). MOGREPS-UK is 
nested in the Met Office global ensemble, with initial and boundary conditions directly 
downscaled from the corresponding global ensemble members (since March 2016, each 
ensemble member is initialised by re-centering over the UKV analysis, as described in 
Tennant, 2015).  The question then remains of how best to represent model uncertainty in 
MOGREPS-UK. 

 
When it comes to representing model uncertainty at the convective scale, a natural starting 
point it to use one of the established stochastic physics schemes used at global and meso-
scales. It is not as straightforward as simply choosing one such scheme and implementing it, 
as different physical processes dominate at the convective scale and any such scheme will 
first need to be adapted to the relevant small-scale processes. 
Determining the nature of the model uncertainty is also not straight forward – ideally, we 
would have a full evaluation of the type and extent of model uncertainty and could match our 
choice of stochastic physics scheme appropriately. In the absence of such an evaluation, we 
rely on the experience of forecasters and parametrization modellers to identify key areas in 
the model that are either inherently uncertain or known to be inadequately represented. 

 
One stochastic physics approach used in the Met Office global EPS is the Random Parameter 
(RP) scheme (Bowler et al. 2008).  The RP scheme perturbs a set of parameters from relevant 
parametrizations and varies them stochastically throughout the forecast.  Like the 
Stochastically Perturbed Physics Tendency (SPPT) schemes (e.g. Buizza et al. 1999; Charron et 
al. 2010), the RP scheme is used to represent the knowledge uncertainty in the physics 
parametrizations. The RP scheme has the advantage over SPPT that it targets known areas of 
uncertainty within the parametrizations, it produces physically realistic tendencies, is 
conceptually simple and cheap to implement. The limitations of the scheme are that it needs 
regular updates as physics parametrizations are changed and developed, and the choice of 
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parameters and their ranges can be subjective. Historically, the RP scheme has shown only a 
modest impact on spread and skill and there is a question over the most appropriate way to 
evolve the parameters through time.   We chose this approach over the SPPT scheme as, while 
the SPPT scheme has the potential to increase the spread of the ensemble, it is applied in a 
general way to the atmospheric variables, and not linked to any particular physical processes 
or physical understanding. 

 
To make the RP scheme suitable for the convective scale of MOGREPS-UK, we have revised 
the RP algorithm to make it easily adaptable to different spatial and temporal resolutions. In 
the original RP scheme as used in the global ensemble, the parameters are updated every 3 
hours with shocks up to a third of the parameter range. 
For MOGREPS-UK, we use the revised algorithm and the parameters are updated more 
frequently (every 5 minutes) with smaller perturbations so that the parameters take a 
smoother, more slowly varying path throughout the forecast. We apply the revised algorithm 
to a set of parameters in MOGREPS-UK chosen to represent uncertainty in the 
parametrizations relevant to the convective-scale UK forecast. These parameters are from the 
boundary layer and micro-physics parametrizations and cover processes including cloud 
formation, rain rate, turbulent mixing, entrainment at the boundary layer top and near-
surface droplet settling. 

 
Fog forecasting is of particular interest to the UK forecast - accurately predicting the timing, 
location and extent of fog can be challenging, and the implications of getting the forecast 
wrong can cause major problems, particularly in the aviation industry.  One of the reasons 
that fog is so difficult to forecast, is that it depends on local scales that may be inherently 
uncertain and poorly observed. The forecast of fog is affected by many of the parameters used 
in the revised RP scheme.  Two of the new parameters have been chosen to explicitly address 
the uncertainty in fog formation. The first is related to droplet settling and fog dissipation and 
is a parameter to which fog formation in the model is known to be particularly sensitive 
(Wilkinson et al. 2013). The second is related to the contribution of wind shear to 
entrainment at the BL top and addresses a known issue in the model where fog is erroneously 
lifted into stratocumulus (see discussion in Price et al. 2015). 

 
To assess the impact of the revised RP scheme on MOGREPS-UK, we consider fog case 
studies and the objective verification statistics of two separate month-long trial periods 
covering winter and summer. In each case, a reference ensemble (straight downscaler, no 
stochastic physics) was compared with the RP ensemble (as the reference ensemble plus the 
revised RP scheme). The case study results show that the revised RP scheme in MOGREPS-
UK increases the variability in the forecast of fog while producing physically realistic 
forecasts. This increase in variability results in a reduction of over-confident probabilities of 
fog and therefore a more useful probabilistic forecast. The case studies also show the 
encouraging results that the revised RP scheme enables the ensemble to capture observed 
fog events otherwise missed by the forecast. 

 
For both the winter and summer trials, the RP ensemble shows a small increase in spread for 
surface temperature and 10m wind compared with the reference ensemble. Probabilistic 
scores show an overall improvement in ensemble skill for visibility and surface temperature. 
Positive results were also seen for cloud base height and fog, however statistical tests (using 
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the non-parametrix Wilcoxon test for paired data as described in Hamill 1999) indicate that 
these last two results are not statistically significant – we hypothesise that this is because 
there are too few fog and low cloud cases in a month and that a better test would be to run the 
ensemble over a series (30+days) of interesting fog case studies. 
 
Overall, we have found the revised RP scheme to have a positive impact on MOGREPS-UK 
with particular benefit to fog forecasting. The scheme has been running operationally in 
MOGREPS-UK since March 2016. Currently, work is undergoing at the Met Office to extend 
the RP scheme to parameters in the land-surface scheme, and Warren Tennant (Met Office) is 
trialling a spatially varying version of the RP scheme in the global ensemble. In parallel to the 
work described here, Adrian Lock (Met Office) has developed a scheme to stochastically 
perturb potential temperature in the lower part of the boundary layer in conditionally 
unstable regimes. This scheme has a positive effect on the initiation of convection and is 
currently being run operationally at the Met Office in both the single high resolution model 
(UKV) and MOGREPS-UK. Refinements to the BL perturbations are also underway and there 
are plans to apply these perturbations to other variables in the boundary layer (Adrian Lock 
and Carol Haliwell Met Office, and Peter Clark, University of Reading). 
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Model Uncertainty Representation in COSMO-DE-EPS 
 

Susanne Theis, Michael Buchhold, Christoph Gebhardt, Regina Kohlhepp, 
Andreas Röpnack  

Deutscher Wetterdienst, Offenbach, Germany 

 
The convection-permitting ensemble prediction system COSMO-DE-EPS has been running 
operationally at the German Weather Service (DWD) since 2012. It consists of 20 ensemble 
members with a grid spacing of 2.8 km. Ensemble forecasts are started 8 times per day with a lead 
time of 27 hours (03UTC run: 45 hours). The model domain comprises Germany and neighbouring 
areas. The ensemble represents forecast uncertainties by variations in initial conditions, lateral 
boundary conditions and model physics (Gebhardt et al., 2011; Peralta et al, 2012). 
 
In the operational version of COSMO-DE-EPS, model uncertainties are represented by a multi- 
parameter approach. The method is closely connected to the advice of parametrization experts and 
it has the advantage of fast implementation. It is targeted to user-specific aspects of the forecast 
(e.g. precipitation, 2m-temperature). As a starting point, ensemble experts and parameterization 
experts come together, discuss forecast uncertainties and pre-select promising candidates for 
parameter perturbations (e.g. entrainment rate of shallow convection, critical value of normalized 
oversaturation in the microphysics scheme, asymptotic mixing length in the turbulence scheme). 
The discussion already refers to the evaluation criteria described below. 
 
The current implementation is fairly simple. Some ensemble members run with the default value 
of the parameter and some run with an alternative value. These values are constant within the 
model domain and during forecast integration (0-27 hrs / 0-45 hrs). For some parameters, there is 
only one alternative value. For other parameters, there are two alternative values, but their 
differences to the default are not necessarily symmetric. Today, the operational COSMO-DE-EPS 
perturbs 5 parameters (5 default values and 7 alternative values). 
 
Before operational implementation, the parameter perturbations have been evaluated with regard 
to the following criteria: (1) ensemble spread and (2) ensemble quality, including the criterion of 
similar quality and bias in each individual member (Gebhardt et al., 2011). 
 

(1) In terms of ensemble spread, case studies indicate whether the multi-parameter 
approach is able to capture events that would have been missed otherwise. Further 
evidence is added by statistical analysis of many cases. In the statistical context, it can be 
crucial to diagnose spread in a regime-dependent way (Keil at al., 2013). It is also 
interesting to estimate “spread in location”, detecting to which extent the alternative 
scenarios cause precipitation to occur at locations different from the default scenario. 

(2) In terms of ensemble quality, each member is evaluated individually and also the entire 
ensemble is evaluated (e.g. Brier Score, CRPS, spread-error relation). Verification of 
individual members explicitly looks at their forecast bias and at their forecast quality. If 
the members are similar in bias and quality, there is evidence that ensemble spread is 
not simply generated by differing biases and also that members may be treated as 
equally likely. The parameter perturbation is rated as suitable for operational use only if 
these criteria are fulfilled. In addition to the statistical evaluation, visual inspection of 
individual fields is beneficial, because it can detect unrealistic behaviour in observation- 
sparse regions (e.g. over sea).  
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As the development involves a manual selection and testing procedure, the current approach 
requires some effort in maintenance. Adaptations become necessary whenever the model version 
or the user-specific aspects change. Recently, the renewable energy sector has become a potential 
user of the forecast, so there is an incentive to improve COSMO-DE-EPS with regard to additional 
aspects (e.g. low-level clouds and solar radiation, low-level jet and wind in 100m height). Similarly 
to other convective-scale ensembles, these variables suffer from a lack of ensemble spread in 
COSMO-DE-EPS. Current development has attained improvements by enlarging the set of 
perturbed parameters, so COSMO-DE-EPS will soon perturb 9 parameters (9 default values and 13 
alternative values). 
 
Further attempts at optimization require much effort with a relatively small gain. One issue is the 
optimal combination of different parameter values in each member. Current development aims at 
replacing the fixed setting by a randomized one, so the combination of different parameter values 
would be a random result and not subject to optimization. The random scheme would be active at 
each forecast start. It would assign the various parameter values to each member and they would 
still be constant during forecast integration. Verification indicates that forecast quality is not 
degraded by the randomly combined parameter perturbations. 
 
The multi-parameter approach covers an incomplete portion of the entire model uncertainty. A 
fully stochastic approach is believed to have more potential if appropriately developed. As a 
medium-term goal, DWD’s research team on “physical processes” is developing a stochastic 
perturbation of model tendencies (E. Machulskaya, DWD, see poster at this workshop). The 
approach consists in a prognostic equation of model error. The equation contains parameters 
which specify noise amplitude and its autocorrelation in space and time. By applying a proxy for 
model error, it can be shown that these parameters are statistically related to resolved model 
variables. This may be an opportunity to use resolved model variables as predictors for the 
evolution of model error, resulting in a flow-dependent model of the model error. 
 
As a long-term goal, DWD also supports research via the Hans Ertel Centre for Weather Research. 
Within this framework, a stochastic parameterization of shallow cumulus convection is developed 
at the Max Planck Institute for Meteorology (Sakradžija, 2015). Also within this framework, a 
model error representation within ensemble based data assimilation is developed at the Ludwig-
Maximilians University in Munich (M. Sommer, LMU, see poster at this workshop). 
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Stochastic Parameterization: Towards a new view of Weather and 
Climate Models 
 
Judith Berner 
 
National Center for Atmospheric Research, Boulder, Colorado, USA 
 
The last decade has seen the success of stochastic parameterizations in short-term, medium-
range and seasonal forecasts: operational weather centers now routinely use stochastic 
parameterization schemes to better represent model inadequacy and improve the 
quantification of forecast uncertainty. 
 
Developed initially for numerical weather prediction, the inclusion of stochastic 
parameterizations not only provides better estimates of uncertainty, but it is also promising for 
reducing longstanding climate biases and is relevant for determining the climate response to 
forcing such as an increase of CO2. 
 
Recent work from different research groups is reviewed. It shows that the stochastic 
representation of unresolved processes in the atmosphere, oceans, land surface and cryosphere 
of comprehensive weather and climate models (a) gives rise to more reliable probabilistic 
forecasts of weather and climate and (b) reduces systematic model bias. 
 
We make a case that the use of mathematically stringent methods for the derivation of 
stochastic dynamic equations will lead to substantial improvements in our ability to accurately 
simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics 
and turbulence is reviewed, its relevance for the climate problem demonstrated, and future 
research directions outlined. 
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Model uncertainty in global ocean models: Stochastic 
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Model resolution of current state-of-the-art ocean models, especially on timescales of seasons 
to decades, is of the order of 100km. Mesoscale eddies in the ocean are, however, about an 
order of magnitude smaller. Therefore most ocean models used for seasonal or decadal 
predictions utilize resolutions where mesoscale eddies are not or only partially resolved. As a 
consequence, the effects of unresolved eddies on the resolved, large scale circulation need to 
be parametrized. 

Eddies are just one of many sub-grid scale ocean processes that are not explicitly resolved in 
ocean models. Most of the commonly implemented parametrizations deal with unresolved 
horizontal and vertical sub-grid scale mixing processes that can vary strongly with time and 
location. Oftentimes these parametrizations and their parameters are imperfectly constraint, 
due to missing process understanding or unavailable observations. In this context, stochastic 
parametrizations can help to introduce a measure of uncertainty estimation in the model that 
deals specifically with the uncertainty originating from parametrized processes. Furthermore, 
stochastic perturbations can be used to represent not only the mean impact of the sub-grid 
scales on the resolved flow but also reintroduce some of the sub-grid scale variability that is 
not captured by classical deterministic parametrization schemes. 

One approach to reintroduce sub-grid scale variability as well as implement uncertainty 
estimates in current state-of-the-art climate models is to identify crucial, imperfectly 
constrained parameters or parametrization tendencies and perturb those in a symmetric, 
multiplicative way. We identified three different parametrizations in the NEMO global ocean 
model with a 1 degree horizontal resolution for which certain parameters meet these criteria: 

• The Gent-McWilliams parametrization parametrizes unresolved eddy advection of 
temperature and salinity, especially in the Southern Ocean. It generally leads to a 
flattening of overly steep isopycnal slopes, but the exact amplitude of this process is 
quite uncertain. 

• The strength of vertical mixing in the NEMO ocean model is based on a 
parametrization using a prognostic turbulent kinetic energy formulation, which 
defines the intensity of vertical mixing especially in the upper ocean. 

• In the case of unstable stratification, an enhanced vertical mixing parametrization is 
used to stabilize the water column. 

The amplitudes and timescales of these three mixing parametrizations were perturbed by 
stochastically perturbing important parameters used in their formulation. The applied random 
perturbations were tuned in their amplitude and exhibited temporal and spatial correlations. 

The results show that in uncoupled forced ocean-only simulations the perturbations to sub-
grid scale mixing parametrizations lead to an increase in low frequency variability in eddy-
active regions for a variety of variables, even though the perturbations themselves exhibit high 
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frequency variability. Interannual variability for sea surface temperature, sea surface height, 
integrated heat content and zonally averaged streamfunction was increased predominantly in 
the Southern Ocean and along western boundary currents such as the Kuroshio region. This is 
in accordance with missing low frequency variability in these regions when compared to 
observations and reanalysis products. Therefore, including high frequency perturbations in 
parametrizations of horizontal and vertical mixing improves the representation of low 
frequency variability in the ocean model, an effect that can also be achieved by increased 
resolution but at increased computational costs. However, the effect of the stochastic 
perturbations is not sufficient to fully compensate for the effects of the missing eddy variability 
in the 1 degree ocean model. 

In coupled ECMWF seasonal forecasts with the same ocean model and horizontal ocean 
resolution, the stochastic perturbations increase the ensemble spread again especially in the 
eddy-active regions of the Southern Ocean and the western boundary currents, for variables 
such as sea surface temperature and upper ocean heat content (see figure). This is the case for 
months 3 to 10 of the 10-month forecasts. The increase in spread leads to an increase in 
forecast reliability in the Southern Ocean, where ensemble spread strongly underestimates the 
forecast error. The forecast error itself is affected by the stochastic perturbations as well, but 
while the error is reduced in some regions, in other regions the stochastic perturbations lead 
to an increase in forecast error. However, it should be noted that the seasonal forecasts are not 
retuned after implementation of the stochastic schemes. Also, the effect of the increased spread 
is generally larger than the effect of the schemes on forecast error. Future studies will analyse 
the seasonal forecasts in more detail and will also introduce new stochastic perturbation 
schemes. 

 
Figure 1 Relative changes in spread between the stochastically perturbed forecasts (STO) and 
the reference forecasts (REF) for 20-member ensembles, averaged over the years 1981 to 2005, 
initialised in May and integrated for 10 months. Shown are the results for 700 meter heat content 
and month 8, i.e. December. The spread in the eddy-active regions is increased by more than 
30 %. 
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Representing model uncertainty for climate forecasts 
 
Antje Weisheimer 
 
ECMWF & University of Oxford, UK 
 
Initialised forecasts on climate time scales from months to seasons ahead are routinely issued at 
ECMWF using its coupled Earth System model. The physical basis for such estimates arises from 
the effect on the atmosphere of predictable seasonal-timescale signals arising from the ocean 
and the land surface. Monthly and seasonal predictions provide estimates of forecast of weekly 
and seasonal- means of the coming month and season. 
 
ECMWF’s currently operational seasonal forecast model (System 4 or S4) consists of the 
atmospheric component IFS that contains an explicit representation of model uncertainties 
through the Stochastically Perturbed Physical Tendencies (SPPT) and the Stochastically 
Perturbed kinetic energy BackScatter (SPBS) schemes, and the ocean model NEMO. A set of 
retrospective seasonal forecasts over the period 1981-2010 with and without stochastic 
parametrisations was used to estimate the impact of SPPT and SPBS on the model climatology 
and biases and on the forecast performance (for details see Weisheimer et al., 2014). 
 
It was found that the schemes (primarily SPPT) lead to a reduction of the overly active tropical 
convection and a reduction of the associated model biases for OLR, total cloud cover, 
precipitation and winds especially in the tropical Western Pacific which is a crucial geographical 
region for ENSO. It was further found that SPPT improves the frequency of MJO events in all 8 
phases and increases their amplitude. For a discussion of the impact of the different SPPT scales 
on tropical precipitation see also Subramanian et al., 2016. In terms of forecast quality, several 
examples of improvements due to stochastic perturbations were presented: more skilful and 
reliable tropical temperature and precipitation forecasts up to two weeks, significant increases 
in the MJO spread, and a better calibrated forecasts of SSTs in the western tropical Pacific. These 
improvements are a combination of the effects of having a beneficial increase in the ensemble 
spread and a reduction in the ensemble-mean forecast errors with stochastic perturbations. 
 
Some hypotheses have been put forward as to why SPPT leads to a systematic shift of the 
distribution of precipitation in the tropics. These include mathematical effects of the product of 
two distributions of random variables (as in the multiplicative SPPT scheme), the existence of 
non-linear physical thresholds affected by the stochastic perturbations, e.g. the trigger for deep 
convection or super-saturation, the tapering of the boundary layer in SPPT and related 
inconsistencies, e.g. in the surface fluxes, the asymmetric nature of specific humidity and 
precipitation, and the tuning of the model in its deterministic formulation rather than the 
stochastic one (noise-induced drift). Work is currently under way to better understand the 
physical mechanisms behind those. 
 
A problem with the surface moisture fluxes in SPPT was found which indicated a drying in the 
atmosphere compared to the unperturbed control members. This lead to large P-E imbalances 
which are not acceptable for climate simulations with SPPT (Davini et al., 2016). A fix that 
empirically corrects for the loss of humidity was introduced and showed that the flux problem 
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could be eliminated. At the time of writing it is very likely that this SPPT fix to conserve 
humidity will become operational in the next IFS model update. 
 
The land surface is a key component for seasonal prediction due to its inherent longer time 
scales. However, there exist large uncertainties in poorly constrained land surface parameters 
that are often unquantified. We have introduced different schemes to account for such 
uncertainties by explicitly representing them in the land surface model of the coupled ECMWF 
model (MacLeod et al., 2015). The schemes perturb two key hydrological parameters in either a 
static or stochastic way. We have also tested a stochastic tendency perturbation scheme for soil 
moisture and soil temperature using different settings of the spectral pattern generator. The 
results are promising and show improved probabilistic forecasts for cases of strong land-
atmosphere coupling like the European heat summer of 2003. We also find a general 
improvement in the reliability of extreme soil moisture forecasts when the parameter 
perturbations are activated. 
 
Acknowledgement: I would like to thank Jost von Hardenberg (ISAC-CNR, Torino, Italy), David 
MacLeod and Aneesh Subramanian (University of Oxford) and Simon Lang (ECMWF) for their 
input to this workshop contribution. 
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Abstract

Outputs from a data assimilation system may be used to diag-
nose observation and background error statistics, as has been
demonstrated by previous researchers. In this study, that tech-
nique is extended to diagnose model-error statistics using a
weak-constraint data assimilation. It deals with a set of obser-
vations over a time window and uses the temporal distribution
to separate model errors from errors in the background forecast.
In idealised tests this method is shown to be able to successfully
distinguish between model, background and observation errors.
The success of this method depends on the prior assumptions
included in the weak-constraint data assimilation and how well
these describe the true nature of the system being modelled.

1 Introduction

It has long been recognised that computer models of complex
physical processes are imperfect. What has been less clear is
how to estimate the magnitude and structure of these imper-
fections. In particular, how does one differentiate errors in the
numerical model from those in the observations and from any
chaotic growth of small errors intrinsic to the system being
modelled?

Recently Todling (2015) introduced a method to diagnose the
model-error covariance from a pair of data assimilations — one
of which is a filter and the other a smoother (able to use future
observations). This system is described as sequential, since it is
devised for a set of observations which are available at discrete
times, rather than being spread over a given time window.

2 Weak-constraint data assimilation

To find the analysis in a system which is affected by model
error one can use weak-constraint data assimilation. At a set
of times we allow the analysis trajectory to depart from the
solution given by the nonlinear model according to

xi = Mi(xi−1) + ηi (1)

where xi is the model state at time i and Mi is the nonlinear
model propagator from time i − 1 to time i. At each time we
are permitting a modification of the model state of ηi.

If we use this perturbed model to define a four-dimensional
state x, then we can write the weak-constraint cost function as
(Trémolet, 2006)

Jweak =
1

2
(x − xb)TB−1(x− xb) +

1

2

n
∑

i=1

η
T
i Qiηi+

1

2
(y −H(x))TR−1(y −H(x)).

(2)

where Qi is the model-error covariance for time i and n is the
total number of times at which a modification is allowed. If we
assume that the modification at each time is the same, then we
may write the total effect of the modifications on the trajectory
as
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where Mj←i is the linear propagator of the numerical model
from time i to time j. The final term in equation (2) then
becomes

Jo =
1

2
(y −H(M(xb))−HMda

b −HNη)TR−1

(y −H(M(xb))−HMda
b −HNη)

(4)

where da
b is the increment applied to the initial condition. From

this we can derive an expression for the model forcing term as

η = Kqdo
b (5)

where

Kq = QNTHT
(

HMBMTHT + R + HNQNTHT
)

−1

(6)

and do
b is the innovation (the difference between the observa-

tions and the background trajectory).

2.1 Diagnosis using weak-constraint DA

Desroziers et al. (2005) introduced a method to diagnose the
observation-, background- and analysis-error covariance matri-
ces from data assimilation statistics. To extend this technique
to model errors, we first need to calculate the covariance of the
innovations. Following the assumption we made earlier we take
the model errors to be constant during the DA window, but
uncorrelated with background and observation errors. In this
case the innovation covariance is

E((do
b) (do

b)T) = Ro + HMBoMTHT + HNQoNTHT (7)

where Qo is the observed model-error covariance. For observa-
tions at the end of the window the last term is proportional to
the number of time-steps squared, n2, since each N contains a
summation of n terms.

Thus, the cross-covariance between the model forcing term
and the innovation will be

E(HNη(do
b)T) = HNKqE(do

b(do
b)T)

= HNQNTHT∆Kw (8)

1



where ∆Kw is given by

∆Kw =
(

HMBMTHT + R + HNQNTHT
)

−1

(

HMBoMTHT + Ro + HNQoNTHT
)

.
(9)

To simplify the estimating procedure we use only observations
from the first time in the data assimilation window, since the
above expression will not then include the tangent linear model.

3 Experimental setup

To investigate the behaviour of the diagnostics tests were com-
pleted using the model of Lorenz (1995) which is based on the
idea of waves propagating around a latitude circle. This cir-
cle is divided into 40 grid-points, and at each time step the
grid-points are updated according to

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F (10)

where the variables xi, i = 1, 2, ..., N , are defined on a cyclic
chain such that x−1 = xN−1, x0 = xN and x1 = xN+1. These
experiments use a forcing term F = 8 which is within the
chaotic regime. The Runge-Kutta 4th order method was used
to perform the time stepping, for intervals of δt = 0.05.

To create a model which is affected by model error, we follow
an approach similar to that of Todling (2015). For each time-
step in the truth run a random term is added to equation (10)
of the following form

δr = G1/2δp (11)

where G1/2 is the symmetric square-root of the covariance ma-
trix G. For the first half of the domain G takes values given by
a Gaussian function of the distance between the points, using a
length-scale of 5 grid-points. For the second half of the domain
all the elements are zero, meaning that only the first half of the
model is perturbed.

The data assimilation was run using weak-constraint 4DVar.
This was given observations every time-step, and the data-
assimilation window used observations from three times. Obser-
vations were produced by perturbing the truth run with errors
sampled from N(0, 0.12). By choosing small observation errors
we ensure that the analysis errors are small, and the tangent-
linear approximation used by 4DVar is valid.

4 Results

Figure 1 shows the estimates of the single-step model-error co-
variance matrix for the Lorenz ’95 system. The initial input to
the data assimilation (top-left) is an homogenous and nearly-
diagonal covariance matrix. This is taken from the background-
error covariance matrix estimated from an experiment using the
Lorenz ’95 model without model error and scaled to give rea-
sonable results. As an approximation to the true model-error
covariance matrix (top-right) it is quite poor.

The diagnostic estimate of the model-error covariance is
shown in the bottom-left. The second half of the domain does
not experience model error, and the estimated model error co-
variance is much reduced in this region. There is still an imprint
of the initial model-error covariance in the estimated matrix,
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Figure 1: Single-step model error covariance matrix for the
Lorenz ’95 model. In these graphs the top-left graph shows the
scaled input provided to the data assimilation, the top-right
shows the true covariance matrix which is the target for the
estimation. The bottom-left graph shows the estimate from
the first run of the DA, and the bottom-right graph shows the
estimate from the tenth run.

but the magnitude is much reduced. The diagonal elements in
the first part of the domain are also reduced. However the off-
diagonal elements are increased, reflecting the correlations in
the true error covariance matrices. This is iterated by placing
the diagnosed B, Q and R matrices as input in the next run
of the data assimilation. After 10 iterations the diagnosed Q

matrix (bottom right) is very close to the true Q matrix (top
right).

Acknowledgement

This work was developed following a series of discussions with
Mike Cullen. The author would like to thank him for his very
helpful input.

References

Desroziers G, Berre L, Chapnik B, Poli P. 2005. Diagnosis of
observation, background and analysis-error statistics in ob-
servation space. QJR Meteorol Soc 131: 3385–3396. doi:
10.1256/qj.05.108.

Lorenz EN. 1995. Predictability: a problem partly solved. In:
Proceedings of the seminar on predictability, vol. I. ECMWF:
Reading, Berkshire, UK, pp. 1–18.

Todling R. 2015. A lag-1 smoother approach to system-error es-
timation: sequential method. QJR Meteorol Soc 141: 1502–
1513. doi: 10.1002/qj.2460.
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A comparison of the model error and state formulations of weak-
constraint 4D-Var 

Amos S. Lawless, Adam El-Said, Nancy K. Nichols 

University of Reading, School of Mathematical and Physical Sciences 

 
In this study we compare two formulations of the weak-constraint 4-dimensional variational 
data assimilation problem (wc4DVAR) - the ‘model error formulation’, in which the initial state 
and the model errors are estimated, and the ‘state formulation’, which estimates the model state 
throughout the assimilation window.  The accuracy and efficiency with which the problems can 
be solved are determined by the condition numbers of the Hessians of the respective cost 
functions. Here we compare the sensitivities of the condition numbers and the convergence 
behaviour in the assimilation to changes in the input assimilation parameters. 

We compare the two formulations applied to assimilation on a model of the linear advection 
equation. Using identical twin experiments we demonstrate the sensitivities of the condition 
number, convergence and solution of both algorithms to changes in the input data, such as 
observation accuracy, number of observations, correlation length-scales and assimilation 
window length. We show that both formulations are sensitive to these parameters. However, for 
some parameters the sensitivities can be quite different between the two formulations.  

 



Using trajectories of ensemble analyses and tools from weak 
constraint 4DVAR to represent model uncertainty  

Craig H. Bishop 

Naval Research Laboratory, Monterey, California, USA 

 
Weak constraint 4DVAR can be formulated to yield estimates of the stochastic component of 
model error. The accuracy of these estimates depends on the accuracy and number of 
assimilated observations, and the accuracy of the model error covariance matrix used in the 
weak constraint 4DVAR algorithm. To better understand and quantify these dependencies, 
weak constraint 4DVAR stochastic model error retrieval methods are applied to an idealized 
medium dimensional (240 variables) stochastic coupled model in which the stochastic forcing is 
precisely known. The experiments have indicated that even in this idealized system, for which 
all sources of uncertainty can be accurately quantified, an extremely high degree of 
observational coverage and accuracy is required to accurately recover individual stochastic 
noise realizations. 

As a perhaps more promising alternative, experiments have been performed using the weak 
constraint 4DVAR apparatus to adjust trajectories of EnKF ensemble analyses to (a) enforce 
consistency between the model and observation space analyses and (b) estimate "balanced" 
model error realizations. The approach significantly improves the analyses in model space. The 
presentation will include results from attempts to quantify the extent to which stochastic 
perturbations based on an archive of such variationally derived model error realizations would 
be superior to perturbations based on the difference between forecasts and their verifying 
analyses.   



Model error representation in convection-permitting forecasts and 
ensemble data assimilation  

Glen Romine 

National Center for Atmospheric Research (NCAR), Boulder, CO, USA 

 
Regional ensemble prediction systems are typically deficient in error growth leading to under-
dispersive predictions. There are a number of challenges within a regional modelling 
framework to improve forecast reliability, spanning initial and lateral boundary condition 
diversity along with a wide range of approaches to represent error in the forecast model. The 
effectiveness of these error growth sources depends on the forecast duration, domain size, and 
horizontal grid spacing among other factors. For continuously cycled ensemble data 
assimilation systems, insufficient error growth is often compensated through various inflation 
approaches. Meanwhile, with convection-permitting ensemble forecasts approaches include 
initial and lateral boundary condition diversity, multi-physics, and stochastic model error 
schemes. This talk will describe the framework behind NCAR’s real-time convection-permitting 
ensemble prediction system along with outlining the current challenges and our ongoing 
activities in convection-permitting ensemble forecast system design.    
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Improving the Stochastically Perturbed Parametrisation 
Tendencies Scheme using High-Resolution Model Simulations 

 
Hannah Christensen1, Sarah-Jane Lock2, Andrew Dawson1 and 
Tim Palmer1 

1Atmospheric, Oceanic and Planetary Physics, University of Oxford 
2European Centre for Medium-Range Weather Forecasts 

 
Stochastic parametrisations are used in weather forecasts as a physically motivated way of 
representing model uncertainty due to unresolved processes. In particular, the “Stochastically 
Perturbed Parametrisation Tendencies” (SPPT) scheme has become widely implemented in 
operational centres. SPPT is a holistic approach that represents uncertainty in all the sub-grid 
physics parametrisation schemes. It is easy to implement, and has beneficial impacts on 
medium range, seasonal and climate timescales. In the SPPT approach, the tendencies from 
the different parametrisation schemes are added together, and a spatially and temporally 
correlated random number is used to multiply this total tendency: 

T = D + (1+ e)∑Pi 

i=1 

where T is the final total tendency, D the tendency from the dynamics scheme Pi, the tendency 
from the ith parametrisation scheme, and e, the spatially and temporally correlated zero-
mean random number (Palmer et al, 2009). 

However, despite the widespread use of the SPPT approach, little work has focused on 
providing a firm physical basis for the SPPT scheme. The scheme involves several 
assumptions. Firstly, the errors from different parametrisation schemes are assumed 
perfectly correlated. Secondly, the imposed spatial and temporal correlations are not based on 
observations, though the optimal magnitude of the noise has been justified. 

The sensitivity of the scheme to the first of these assumptions can be tested. A generalised 
version of SPPT is developed whereby the individual parameterisation schemes are perturbed 
with an independent stochastic perturbation field. This ‘independent SPPT’ (iSPPT) approach 
assumes the errors from the different schemes are uncorrelated, and allows the user to set the 
noise magnitude and spatial and temporal characteristics separately for each parametrisation 
scheme. A ‘partially independent’ approach can also be used, whereby some schemes are 
perturbed with the same stochastic pattern, while others are perturbed independently. 

A series of 21 member ensemble forecasts were performed in CY41R1 at TL255 and in 
CY42R1 at TCO255. Standard SPPT was compared to iSPPT and to a partially independent 
SPPT in which two patterns were used, one for the moist and one for the dry processes. 
iSPPT led to a significant improvement in ensemble forecast reliability in the tropics, 
increasing the spread, reducing the ensemble mean error, and improving the continuous 
ranked probability skill score across a range of variables. However, in the southern 
extratropics the iSPPT scheme leads to a slight increase of error. The two- pattern approach 
seems to be a good compromise, performing well in all regions across many variables. Both 
iSPPT and partially independent SPPT have the largest impact in regions with significant 
convective activity, correcting the underdispersive nature of the ensemble in those regions. 

However it is likely that the true parametrisation errors are neither perfectly correlated, as in 
SPPT, nor uncorrelated, as in iSPPT. We propose the use of high-resolution model simulations 
to explicitly measure the difference between the parametrised and ‘true’ 
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sub-grid tendencies: in this way, we characterise the error in the tendency that 
stochastic schemes such as SPPT seek to represent. This allows for a more systematic 
approach towards improving SPPT. 

We use data from a high-resolution convection permitting integration with the UK Met 
Office limited area model as ‘truth’. The model is run at 4km horizontal resolution with 
70 levels in the vertical up to the model top at 40 km, and covers a large tropical domain 
(15,500 km x 4,500 km), focusing on regions of tropical convection in the Indian Ocean 
and West Pacific. This integration was performed as part of the CASCADE project 
(Holloway and Woolnough, 2013). 

The high-resolution data is coarse-grained to the resolution of the ECMWF ensemble 
prediction system. This is used to provide initial conditions and forcing data for the IFS 
single column model (SCM). Short-range predictions with the SCM (15 minutes to one 
hour) are compared to the coarse-grained CASCADE data to derive the error statistics. 

The SPPT equation can be rearranged to give: 

T − D −∑Pi  = e∑Pi 

i=1 i=1 

T is the ‘true’ total tendency from the CASCADE dataset, while D and Pi are the dynamics 
and physics tendencies from the SCM. All tendencies are a function of height at each 
location, while e, the optimal multiplicative perturbation, is a scalar. We can therefore 
solve this equation as a function of position and time to calculate a snap-shot of the 
optimal perturbation field, such as that shown below: 

 
 

By repeating this calculation for all time steps within the CASCADE dataset, we can build 
up statistics of the optimal perturbation to be used in SPPT. We can also repeat the 
calculation allowing each parametrisation scheme to be perturbed independently, as in 
iSPPT. This allows us to investigate the error characteristics of each parametrisation 
scheme separately. It is hoped these measurements will improve both holistic and 
process based approaches to stochastic parametrisation. 
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Impact of a stochastic deep convection scheme using cellular 
automata in the meso-scale ensemble prediction system; Harmon-EPS 

 
Lisa Bengtsson 
 
SMHI 

 
There is a long standing discussion in the Numerical Weather Prediction (NWP) community whether 
model error (arising from model physics) should be represented in form of stochastic physics applied 
a posteriori after the tendencies from the physical parameterizations have been computed, or whether 
it should be included at the source of uncertainty, at the sub-grid, in form parameter perturbations or 
a stochastic parameterization (see for instance various methods discussed in Berner et al. 2016). 
Although the latter sounds appealing, since one could really address the model error in a more 
physically motivated manner, the former has proven more successful in many ensemble prediction 
systems, using the stochastically perturbed parameterization tendency (SPPT) scheme (e.g Buizza et 
al., 1999, Palmer et al., 2009), and the stochastic kinetic energy backscatter scheme (SKEBS) (Shutts, 
2005). One reason for the success of these schemes is the fact that the scheme are correlated in space 
and time over scales far beyond the sub-grid scale, whereas sub-grid representation of model error, 
such as parameter perturbations or white noise stochastic parameterizations, are limited to the 
“column physics”, and thus there are no spatial and temporal correlations of the perturbations. 

 
One way to include both spatial correlations, and temporal memory to a stochastic parameterization 
included on the sub-grid, was to couple a cellular automaton to the deep convection parameterization 
of the NWP model, ALARO (Bengtsson et al. 2013). The cellular automaton is in this scheme acting on 
the sub-grid of the NWP model and can form clusters which can organize themselves across the NWP 
model's grid-boxes to enhance deep convective organization. This way the cellular automata can form 
a “fraction of the NWP grid-box” that are later coupled back to the model via the updraft mesh-
fraction in the closure assumptions of the deep convection parameterization. The cellular automata is 
only coupled back to the deep convective evolution of the updraft mesh-fraction if the value of CAPE 
exceeds a certain threshold. 

 
The aim of the study presented at this workshop was to understand whether such a stochastic 
parametrization on the sub-grid scale could be used in order to represent the uncertainty associated 
with deep convection, and provide more reliable probabilistic forecasts in an ensemble prediction 
system for the mesoscale. Describing the statistical effect that deep convection has on the large- scale 
flow in a stochastic manner means that the resolved scale variables, such as the vertical and 
horizontal wind or temperature, would respond differently to the convection scheme each time the 
model was run. Thus, the stochasticity of the implemented parametrization can be studied by 
examining the ensemble spread in resolved model variables generated from the sub-grid scheme. 
The expectation is to capture better the range of possible convective responses given by the 
ensemble members in the resolved fields of the model. 
 
The study has been published in Bengtsson and Körnich, 2016. The ensemble prediction system used 
is called Harmon-EPS, it is an ensemble prediction system aimed at the mesoscale and is based on the 
Hirlam Aladin Regional/Mesoscale Operational NWP In Europe (HARMONIE) forecast system, which is 
developed within the two HIgh Resolution Limited Area Model (HIRLAM)–Aire Limit´ee Adaptation 
dynamique D´eveloppement InterNational (ALADIN) consortia, a collaboration on NWP development 
between 26 countries in Europe.  
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It was found that the stochastic cumulus parametrization does in general give an increased amount 
of convective precipitation in regions where CAPE is large. This resulted in a larger ensemble spread 
of convective precipitation. However, as a consequence of the parametrization, resolved precipitation 
was reduced due to an increase in sub-grid precipitation, giving a decreased ensemble spread over 
the domain average for total precipitation. Such reduction in resolved precipitation also led to an 
improvement in precipitation bias for the test-period, which in general improved the skill. Thus, from 
the classical view of introducing stochastic physics in order to increase the ensemble spread, doing 
so within the physical sub-grid parametrization is not straightforward. Various feedbacks within the 
physical parameterization even lead to a reduced spread in some instances where the skill was 
improved. 

 
Overall, for 6 h accumulated precipitation, the BSS, CRPS and mean bias were for the most part 
improved (with the exception of small thresholds for precipitation in the BSS), which suggests that the 
ensemble forecast was improved, however, not by reason of increasing the spread but instead by 
improving the skill, due to the inclusion of the dependence of CAPE in the closure and the memory and 
lateral communication of the cellular automata. 

 
In the future the scheme’s impact will be tested on equatorially coupled waves over the Tropics in 
order to understand further the potential for “upstream” representation of model error when the 
coupling between the deep convective organization and the atmospheric flow is large. 
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Many physical processes, such as boundary layer tur-
bulence or cloud microphysics, are represented in numeri-
cal weather prediction (NWP) models by physical param-
eterization schemes. These schemes contain closure pa-
rameters to express some unresolved variables by prede-
fined parameters rather than by explicit modelling. The
increasing complexity of NWP models makes it very de-
manding to optimally specify parameters values by man-
ual techniques using limited samples of test forecasts.
This may partly explain the increasing difficulties en-
countered in integration of new physical parametrizations
schemes into model dynamics. Development of algorith-
mic tools to make statistical inference about the closure
parameters would be helpful to facilitate and speed-up
NWP model development. The same question of parame-
ter optimization and uncertainty quantification is equally
crucial for climate models. Additionally, the situation
is complicated here by the challenge of unpredictability:
due to chaoticity there is no unique solution for the long
time model integrations, even with fixed model parame-
ters, see, e.g., Ref.1 for more discussion. Here we present
recent methods for parameter estimation of chaotic sys-
tems, both for short-time and long-time situations.

Several approaches have been proposed for joint esti-
mation of static parameters and dynamic state variables.
It is relatively straightforward to augment the state vec-
tor in filtering applications with the static model parame-
ters and treat them as artificial model states. A drawback
is that parameter values tend to change from one filtering
step to the next, in accordance with the changing atmo-
sphere and observing network, although they are static
or quasi-static. Moreover, filtering requires additional
tuning parameters which may lead to bias for the model
parameters Ref.2. Another way of employing the filter-
ing approach is to construct a filter-based likelihood to
be optimized with respect to the parameters Ref.3. For
large systems such iterative optimization is prohibitively
CPU demanding, however. For the same reason other ap-
proaches such as particle filtering are excluded in state
estimation of large systems.

The idea of the EPPES concept Ref.4, Ref.5 is to cre-
ate a ’CPU-free’ NWP model parameter estimation by
slightly modifying an existing EPS system: an opera-
tional ensemble prediction system is added with a func-
tionality to perturb model parameters and to learn which
ones tend to perform well. So the massive amount of
model simulations of ensemble prediction would be uti-
lized for on-line model optimization, practically without
any additional CPU demand. The original EPPES con-
cept is based on the steps, repeated for each assimilation
window, of (i) sampling candidate parameter values from

a Gaussian proposal distribution, (ii) launching each en-
semble member of the prediction model with different
candidate parameter values, (iii) evaluating the perfor-
mance of the parameters against a cost function, and (iv)
adapting the proposal distribution according to the pa-
rameter performance. The adaptation is done in a Monte
Carlo way, based on the importance weights of the cost
function values.

The approach was successfully applied to improve the
performance of the already highly tuned IFS system in
Ref.6, Ref.7. The selection of the cost function, however,
reveals a problem: while the performance of the model
can be improved according to the criteria selected as part
of the cost function, some other aspects of the predic-
tion may deteriorate. This calls for a multicriteria opti-
mization approach, where no relevant part of the model
performance is allowed to converge towards unacceptable
values. In Ref.8 we apply an evolutionary optimization
approach, the Differential Evolution (DE), for this pur-
pose. Each assimilation window may be interpreted as
a generation and the ensemble as the respective popu-
lation. With slight modifications (due to the stochas-
tic nature of the cost functions) the DE algorithm may
then be employed to optimize the model parameters. The
special requirements of various optimization criteria may
be taken into account by, e.g., the desirability function
method. Otherwise the implementation is similar to that
with EPPES, in the sense that an existing EPS system is
used, without any essential new CPU demand. As an op-
timization approach the DE version typically gives faster
convergence, while the sampling-type original EPPES al-
gorithm provides an uncertainty quantification for the
parameter identification.

The closure parameters of a large scale climate model,
ECHAM5, were studied in Ref.9 using several summary
statistics, such as temporal and spatial averages of the
key balance factors of the climate, as the cost function.
While parameter estimation was technically possible to
perform, see Ref.10 for the methods, the results remained
inconclusive. The reason was the difficulty of selecting
the cost function terms that would be sensitive enough
with respect to the closure parameters. The standard
way of estimating parameters of dynamical systems is
based on the residuals between the data and the model
responses, both given at the time points of the measure-
ments. Supposing the statistics of the measurement er-
ror is known, a well defined likelihood function can be
written. The maximum likelihood point is typically con-
sidered as the best point estimator, and it coincides with
the usual least squares fit in the case of Gaussian noise.
The full posterior distribution of parameters can be sam-
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pled by Markov chain Monte Carlo (MCMC) methods.
The approach has become routine for the parameter es-
timation of deterministic models in Bayesian inference,
see Refs.11,13 for further references. The estimation of
the parameters of chaotic models can not be performed
in this way. After an initial time period where the sys-
tem is predictable, the model responses, even with just
slightly varying initial condition or some settings of a nu-
merical solver employed, diverge so that the concept of
a given model response at a given time point loses the
meaning. The same effect can be seen when some in-
finitesimal changes to the model parameters are made.
In this sense, there is no unique model trajectory corre-
sponding to a fixed model parameter vector. But while
all such trajectories are different, they approximate the
same underlying attractor and should be considered in
this sense equivalent. Here we discuss a statistical ap-
proach presented in Ref.14 to quantify such “sameness” of
trajectories, and to distinguish trajectories that are sig-
nificantly different. The basic idea is to create a summary
statistics that takes into account the geometry of the at-
tractor, rather than using direct averages or other (linear)
projections such as used in Ref.9. Various formulations
of fractal dimensions have been developed to characterise
the internal geometry of such attractors. Here we mod-
ify one of these, the so-called correlation dimension15, to
develop a way to quantify the variability of samples of
an attractor by mapping the respective phase space tra-
jectories onto vectors, whose statistical distribution can
be empirically estimated. The distributions turn out to
be Gaussian, which provides us a well defined statistical
tool to compare the trajectories. We use the approach
for the task of parameter estimation of chaotic systems.
Other applications are pointed out as well.
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Recent work in ensemble forecasting has focused on validating the impact of general 

forms of stochastic forcing on TC forecasts (e.g. Snyder et al. 2011, Lang et al. 2012) and has 

shown some beneficial impact. We aim here to specifically address the basic issues of under- 

dispersiveness and biases in ensemble-based TC track distributions through a stochastic 

parameterization that induces TCs to undergo Brownian motion. Because a characteristic of 

Brownian motion is an increasing ensemble position variance with time this allows for the 

inflation of forecasted distributions by user-defined amounts. The proper application of a 

stochastic parameterization however requires a choice of stochastic calculus. There exist two 

standard stochastic calculi that are commonly studied in the theory of stochastic differential 

equations (Kloeden and Platten 1991). The first is that of Itô (1951) and the second is that of 

Stratonovich (1966). The most important point about the choice of stochastic calculus is that 

each one implies a distinctly different algorithm is required to obtain a particular result. The 

algorithmic differences implied by the choice of stochastic calculus and their impact upon the 

structure and life cycle of TCs are the subject of this talk. In the course of this talk we will show 

that the naïve implementation of a stochastic parameterization without properly accounting for 

the appropriate stochastic calculus will lead to undesirable results. In the cases presented here 

these undesirable results will manifest as overly intense TCs, which, depending on the strength of 

the forcing, could lead to problems with numerical stability and physical realism. 
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Inadequate representations of convection and clouds in weather and climate models by parameteriza- 
tions are sources of model error and lead to uncertainties in model predictions. In this presentation, an 
approach for the construction of stochastic convection parameterizations has been presented. Results are 
shown for convection parameterizations that are constructed by using observational data. 

 

Firstly, motivations for the usage of stochastic convection parameterization in weather and climate models 
are given: GCM model resolutions tend to increase and are getting close to the Grey Zone. Furthermore, 
the increased variability in convective response in a smaller model column can be captured by using 
stochastic rather than the more classically applied deterministic parameterizations. 

 

Then, the building blocks of our models are presented and explained: data-driven Conditional Markov 
Chains (Crommelin and Vanden-Eijnden (2008)) and stochastic multicloud models (Khouider et al. 
(2010)). A choice can be made between the source of data that is used to infer the Markov chains: high-
resolution observations or high-resolution model data. The size of the area covered by the data is shown 
to be larger for the observations, which is an advantage for the usage of observations. 

 

The construction of the Markov chain multicloud model from observational data is explained in detail. 
It is shown how data of a rain radar in Darwin in Australia can be divided into classes such that only a 
few states are possible for each pixel of the radar domain. The time series that are obtained can be used 
to infer transition probabilities of a Markov chain that switches between states every 10 minutes. After 
construction of the multicloud model, it produces convective area fractions that can serve as a closure for 
the mass flux at cloud base in the convective scheme of a GCM. 

 

Furthermore, with cross-correlation analysis, it is shown that for the observations, the large-scale ver- 
tical velocity ω correlates strongly with convection. The relationship between ω and the convective area 
fraction σ is explained in a figure. 

 

Results from the multicloud model are shown. Convective area fractions produced by the multicloud 
model are compared to observations in Darwin: statistics are well comparable. Then, it is shown that the 
multicloud model can be adapted to the size of the model column for which it has to produce convective 
area fractions. For larger model columns, it is able to produce fractions with smaller fluctuations. 

 

Results are shown for the implementation of several convection parameterizations in a GCM of inter- 
mediate complexity: SPEEDY (Dorrestijn et al. (2016)). Time series of the mass flux at cloud base in one 
grid column are shown and their statistics are shown for the entire tropical belt. A Markov-chain-based 
scheme similar to the scheme of Gottwald et al. (2016), is shown to have a remarkably well similarity with 
the observations. We present autocorrelation functions of the mass flux at cloud base and probability 
density functions of the daily accumulated precipitation produced by SPEEDY with several stochastic 
schemes and compare to control.  Also Hovmo¨ller-diagrams and Wheeler-Kiladis diagrams are presented 
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for the precipitation in the tropics. The stochastic schemes are shown to have a large impact on the 
precipitation. A novel approach for the assessment of the power of the convectively coupled equatorial 
waves has been presented. 

 

In the conclusion section, it is concluded that the stochastic models are able to capture variability re- 
lated to convection; that observations are more useful than high-resolution model data (at the moment); 
that realistic time-series of the mass flux at cloud base can be produced in SPEEDY when the convective 
schemes are conditioned on ω; that the average strength of the mass flux at cloud base affects the simula- 
tion of the MJO and equatorial Kelvin waves; and finally that the skill of these equatorial waves can be 
expressed in a single scaler, which enables modelers to tune models. 
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