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EDA for CAMS’s GHGs analysis

Abstract

The Ensemble of Data Assimilations (EDA) is currently the method used at ECMWF to estimate
the background error statistics for the meteorological analysis. It particularly allows to have flow-
dependent background errors which is beneficial for ECMWF’s operational deterministic meteoro-
logical analysis.

The Copernicus Atmosphere Monitoring Service (CAMS) provides an atmospheric tracers analysis
based on Composition-IFS (C-IFS). Distinctively from ECMWF’s operational deterministic mete-
orological analysis, CAMS analysis uses climatological estimates of background error. We want
to investigate whether using EDA-based flow-dependent background errors for atmospheric tracers
could be beneficial for the CAMS analysis as it is for ECMWF’s operational analysis.

The first step before using EDA-based background errors in the CAMS analysis is to design the
EDA for atmospheric tracers. This document describes the Composition-EDA (C-EDA), a modified
version of ECMWF’s EDA that accounts for the sources of uncertainties associated with atmospheric
tracers. The focus is on two species of the anthropogenic long-lived greenhouse gas family: carbon
dioxide (CO2) and methane (CH4).

A default C-EDA experiment with only perturbations of the meteorological parameters showed that
the spread of the ensemble is larger at the surface than in the troposphere for both CO2 and CH4.
Moreover the ensemble standard deviation has a large variability in time at the surface probably
associated with the time variation of the boundary layer. It also has strong spatial variations at the
surface and in the troposphere probably associated with the spatial distribution of the surface fluxes.
This provides further motivation for implementing fully flow-dependent background errors in the
analysis of atmospheric tracers.

The spread of the ensemble is estimated to be too low when comparing to the ensemble mean back-
ground error. We demonstrate the adding directly a perturbation on the surface fluxes helps to in-
crease the ensemble spread. Nevertheless, it is found that the amplitude of the surface fluxes pertur-
bation used in this document could be too large according to a diagnostic based on the ensemble mean
background error. This emphasizes that the perturbation of the surface fluxes has to be implemented
in the C-EDA experiments, but this requires further developments.
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1 Introduction

To produce an analysis of the meteorological situation, the European Centre for Medium-Range Weather
Forecasts (ECMWF) relies on its forecast model and observations combined together by a 4D-Var as-
similation system. The assimilation process balances the weight given to the observations and that given
to the background (short-term forecast). The background weight is determined by the background error
statistics which are currently estimated using an Ensemble of Data Assimilations (EDA, Bonavita et al.,
2012) in the ECMWF’s Integrated Forecasting System (IFS).

The EDA is designed to represent the main sources of background error. It is composed of an ensemble
of low resolution 4D-Var analysis cycles. Each member of the ensemble makes use of perturbed obser-
vations, perturbed sea-surface temperature (SST) fields and perturbed model physical tendencies. The
EDA is running in parallel to the operational deterministic 4D-Var analysis to represent the evolution
of its errors. Estimating the evolution of the background errors is one strength of the EDA as it has
been demonstrated that using flow-dependent background errors is beneficial for ECMWF’s operational
deterministic meteorological analysis (Bonavita et al., 2015).

As part of the previous EU-funded Global and regional Earth-system (Atmosphere) Monitoring using
Satellite and in-situ data (GEMS) and Monitoring Atmospheric Composition and Climate research and
development projects (MACC to MACC-III) and of the current EU-funded Copernicus Atmosphere
Monitoring Service (CAMS), ECMWF has devoted significant efforts to integrating a detailed represen-
tation of atmospheric composition and associated processes into IFS. The resulting system, Composition-
IFS (C-IFS, Peuch et al., 2015) uses the same 4D-Var system as the operational ECMWF meteorological
analysis to produce analyses of atmospheric tracers (aerosols, reactive gases and greenhouse gases). The
CAMS analysis currently uses static climatological background error statistics and not statistics derived
from an EDA.

We want to investigate whether using EDA-based flow-dependent background errors for atmospheric
tracers would also be beneficial for the CAMS analysis. Weather conditions can have a strong influence
on atmospheric composition. Accounting for the meteorological situation in the analysis of atmospheric
tracers through the background error statistics should lead to improved quality of the analysis. The
first step towards using EDA-based background errors in the CAMS analysis is to design the EDA for
atmospheric tracers. This document describes some modifications brought to the current ECMWF’s EDA
in order to account for the sources of uncertainties associated with atmospheric tracers. For instance, the
surface fluxes and the chemical reactions are some of the error sources of background errors.

The atmospheric tracers in C-IFS are grouped into three categories: aerosols, reactive gases and green-
house gases. In this report we focus on two species of the anthropogenic long-lived greenhouse gas
family: carbon dioxide (CO2) and methane (CH4). The greenhouse gas module is less computationally
expensive to run in C-IFS than the aerosols module or the reactive gases module. This makes CO2 and
CH4 suitable candidates to test different EDA configurations. These two gases are relatively well-mixed
in the atmosphere and are strongly related to surfaces fluxes. The atmospheric concentration of CH4 also
has a chemical dependence.

This report details in Sec. 2 the modifications and extensions of the cycle CY41R1 EDA we implemented
to account for the atmospheric tracers’ sources of uncertainties. Section 3 presents the configuration of
the EDA experiments we ran. Section. 4 presents the results of these experiments. Finally the last section
(Sec. 5) summarizes the results and brings some information on future developments required to further
improve the atmospheric composition EDA.
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2 Practical implementation of the EDA for atmospheric composition

The EDA is composed of a given number M of members. Each member is a succession of analysis
and short-range forecast cycles at a lower resolution than the operational deterministic analysis/forecast
cycle. The spread of the ensemble should represent the uncertainty in the background (short-range fore-
cast). For that purpose, each member of the ensemble assimilates perturbed observations, uses perturbed
SST and perturbed model physical tendencies (Bonavita et al., 2012).

To design the atmospheric composition EDA (or C-EDA) we kept the same perturbations as for the EDA
plus we added the possibility to perturb the atmospheric tracer tendencies (Sec. 2.1) and to perturb the
surface fluxes (Sec. 2.2). Due to the strong spatial variations in the distribution of surface fluxes, the
CO2 and CH4 ensemble spread was found to be much noisier than for the meteorological parameter
close to the surface. Section 2.3 presents the filtering of the ensemble spread. Section 2.4 presents the
used calibration of the CO2 and CH4 ensemble spread based on its comparison with the ensemble mean
background error.

2.1 Tendencies perturbations

The perturbation of the model physical tendencies relies on a noise generated with the Stochastically Per-
turbed Parametrization Tendencies method (SPPT, Palmer et al., 2009). This method is used to generate
a series of two-dimensional horizontal random fields with a zero mean and specified standard deviation,
horizontal correlation length scale and time correlation length scale. We used the default configuration
which consists of a horizontal correlation length scale of 500 km, a correlation time of 6 h and a standard
deviation of 0.52 (Fig. 1). The resulting two-dimensional field is added to the model physical tenden-
cies for each model time step and for all model levels but the lowest ones. The physical tendencies
of the model levels located in the boundary layer are indeed not perturbed in order to avoid numerical
instabilities.

Figure 1: Example of the SPPT perturbation fields for two consecutive 3-hours steps; contour interval
0.25; red (blue) contours correspond to positive(negative) values.

The perturbation of model physical tendencies provides a different transport of the chemical tracers for
each member. This accounts for the uncertainty of the transport. In a first configuration, we decided not
to add any other perturbation of the chemical tracers tendencies. Nevertheless, the perturbation of the
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model physical tendencies has an indirect impact on the CO2 surface fluxes as they are coupled with the
meteorological parameters. As a consequence, in this first configuration, CO2 surface fluxes are already
perturbed.

The chemical loss and production of the chemical tracers are other sources of uncertainty. To account for
them, we decided to add the possibility to perturb the chemical tracers tendencies the same way as for
the model physical tendencies. The only difference is that we apply the perturbation for all model levels.

In C-IFS, surface fluxes are transformed into chemical tracers tendencies in the boundary layer through
turbulent diffusion. Perturbing the tracers tendencies in the boundary layer adds indirect perturbation on
the surface fluxes. As there is no chemistry in C-IFS for CO2, the perturbation of CO2 tendencies implies
an added indirect perturbation on the CO2 surface fluxes. The perturbation of CH4 tendencies further
adds a perturbation of the CH4 chemistry.

2.2 Surface fluxes perturbations

Surface fluxes are among the main drivers of the greenhouse gases concentration in C-IFS. Ocean and
anthropogenic CO2 surface fluxes are prescribed in C-IFS using inventories. Fire emissions are derived
from CAMS GFAS product. Terrestrial biogenic carbon fluxes are modelled by the carbon module of
the land surface model CTESSEL (Boussetta et al., 2013). A more comprehensive description of the
CO2 surface fluxes can be found in Agustı́-Panareda et al. (2014). Methane fluxes are prescribed in C-
IFS using inventory and climatological data sets. A more comprehensive description of the CH4 surface
fluxes can be found in Massart et al. (2014).

Surface fluxes are associated with large uncertainties in terms of amplitude and sometime in terms of
distribution too. We therefore introduced the capability to perturb the surface fluxes of each member to
account for their uncertainty. We selected two different approaches to perturb the surface fluxes for CO2
and CH4. For CO2, we decided to perturb the scaling factors of the biogenic flux adjustment scheme
(BFAS, Agustı́-Panareda et al., 2016). For CH4, we decided to modify the surface fluxes using two-
dimensional perturbed fields.

2.2.1 Building CO2 perturbed surface fluxes

The biogenic CO2 surface fluxes, associated with organic soil and vegetation, are the CO2 surface fluxes
with the highest uncertainties on the global scale. We decided to perturb only this component of the CO2
surface fluxes as a first step. In practice, we perturbed the vegetation gross primary production (GPP)
and the heterotrophic respiration (Reco) as computed by CTESSEL. We then used the Net Ecosystem
Exchange (NEE) as biogenic surface fluxes, which is the difference between GPP and Reco.

The computed values of GPP and Reco depend on the values of some of the meteorological parameters.
As a consequence, the values of GPP and Reco are different for each member due to the perturbation
of the physical tendencies in the EDA. Preliminary results showed that the spread of the resulting NEE
between the members was too weak compared to the expected spread estimated with the ensemble mean
background error (see section 2.4 ). To increase the spread, we decided to perturb even more directly
the NEE. We based our perturbation strategy on the recent developments of BFAS by which GPP and
Reco rescaling factor are computed for various regions and various vegetation types. If γG (v, t) is the
GPP rescaling factor for the vegetation type v and the time t as computed by BFAS, we multiplied this
rescaling factor by 1+α ηG

m (v, t) where α is the amplitude of the perturbation and ηG
m (v, t) a random

number following a normal distribution. The perturbed GPP rescaling factor γ̃G
m (v, t) for the member m,
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the vegetation type v and the time t is then

γ̃
G
m (v, t) = γ

G (v, t)
[
1.+α η

G
m ((v, t)

]
. (1)

For a given vegetation type v, we furthermore imposed a time correlation σt between the random numbers
ηG

m (v, t). A similar perturbation is used for the Reco rescaling factors computed by BFAS.

Figure 2: Example of time series of perturbation of the gross primary production rescaling factor for
the crops over Europe. Top: perturbed rescaling factor for the 25 members (black lines) and reference

rescaling factor (red line). Bottom: distribution of the perturbation over the 25 members.

Figure 2 illustrates the time series of γ̃G
m (v, t) for 25 members and for the crops over Europe. In this

example, the time decorrelation length is set to 3 time steps and the amplitude of the perturbation is
α = 25%.

From the GPP and Reco rescaling factors, BFAS produces re-scaling maps of the biogenic fluxes. Fol-
lowing this approach, we also produced rescaling maps for each member. Figure 3 illustrates the GPP
re-scaling map obtained after the perturbation of the rescaling factors of each vegetation type when the
amplitude of the perturbation is α = 25%.

The BFAS aims at reducing the large scale atmospheric CO2 biases by adjusting the surface fluxes.
Perturbing the parameters of BFAS results in adding large scale bias to the atmospheric CO2 field. This
also changes the CO2 budget of each member without ensuring that the mean ensemble budget is equal
to the budget of the control. These issues will have to be addressed in the future, but for this first try of
perturbing the parameters of the CO2 surface flux, we assume that our strategy is satisfactory enough.

The rescaling factors from BFAS are constant during the short-term forecast in C-IFS as they are meant
to correct the 10-day regional budget. Similarly, we kept the perturbed rescaling factors constant during
the short-term forecast.

Technical Memorandum No. 780 5
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(a) Reference

(b) First member

Figure 3: Example of gross primary production rescaling factor maps: (a) reference map (without per-
turbation) ; (b) map for the first member after perturbation of the gross primary production rescaling

factors for each vegetation type.
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2.2.2 Building CH4 perturbed surface fluxes

The methane surface flux Φ(ξξξ , t) is a two dimensional field with ξξξ the spatial coordinate and t the time
coordinate. To perturb CH4 surface fluxes of each member m, we modified this reference surface fluxes
Φ(ξξξ , t) using a two dimensional random field ηm(ξξξ , t) with a zero mean, a standard deviation of one,
a spatial correlation length rx and a temporal correlation length rt . The surface flux Φm(ξξξ , t) of each
member m is computed with

Φm(ξξξ , t) = Φ(ξξξ , t)(1.+α ηm(ξξξ , t)) , (2)

where α is a parameter to adjust the amplitude of the perturbation.

(a) Two successive perturbation fields; contour interval 0.5; red (blue) contours
correspond to positive(negative) values

(b) Perturbation time serie

Figure 4: Example of perturbation of the fluxes: (a) two-dimensional field of the perturbation η for two
successive times and a given member ; (b) time series of the perturbation η in a given grid point for a

given member.

To generate the random fields ηm(ξξξ , t), we had two approaches. The first approach consists at using the
two-dimensional random field generated by the SPPT method and used to perturb the model physical
tendencies. The advantage of this approach is that the implementation is easy as the random field is
already available in the code. The weakness is that we have to use the same horizontal correlation length
scale and time correlation length scale as for the perturbation of the model physical tendencies.
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To allow more flexibility we generated nt random fields on a regular nlat ×nlon grid with a zero mean,
a standard deviation of one and a time correlation length of σt as a second approach. The introduction
of spatial correlation is based on the convolution of each field with a Gaussian kernel, generated with the
Gaussian window

w(k) = e−
1
2(

k
σw )

2

, (3)

with k the number of points in the output window and σw the standard deviation. We furthermore imposed
the constrains k = 5σw, so that the number of points is large enough compared to the standard deviation
but it not too large in order to save computational time. Figure 4a illustrates the field ηm(ξξξ , t) obtained
for a 401× 800 grid with σw = 10 (grid point). Figure 4b illustrates the time variation of ηm(ξξξ , ti) at a
given point when σt = 6 (time step).

One main difference between the two-dimensional field generated by the SPPT method and the one
generated by the above method is the specification of the horizontal correlation length scale. By con-
struction, the length scale is specified in distance (kilometres for instance) for the SPPT method, while
the length scale is specified in in number of grid points for the the second method. The construction
of the perturbation field could nevertheless be changed in the future to account for different correla-
tion length scales if needed. In addition, a more elaborated perturbation field could have the correlation
length scales accounting for the surface type (land or sea), the surface vegetation or the emission category
(anthropogenic, biogenic, ...).

Currently, CH4 fluxes are constant in C-IFS during the forecast as for CO2. For practical reasons, we
kept this behaviour for the perturbation. The perturbation nevertheless changes from one forecast to the
next with a time correlation of σt . We generated the perturbations on a regular 401× 800 grid and we
interpolated the perturbations towards the resolution of the model.

2.3 Filtering the background error variances

With 25 members, the sample size is not large enough to expect an accurate error estimate. Ad hoc
filtering is required on the raw ensemble estimate as highlighted by Bonavita et al. (2012). A filter based
on two 50-member EDA that were run for 45 days is used for the meteorological parameters. Being at a
stage where we are designing the C-EDA configuration, we do not have yet a selected configuration from
which we could run similar C-EDA experiments to compute the filter for the atmospheric tracers. Instead,
we tried to use the same filter as it is currently used for the U component of wind for convenience.

In C-IFS, CO2 or CH4 variance fields are grid-point fields. The raw ensemble estimate of the CO2
or CH4 variance fields presents sharp gradients at the surface. As a consequence, when the fields are
transformed in the spectral space to apply the filter and then transformed back in the physical space, the
Gibbs phenomenon appears as illustrated by Figs. 5a and 5b. We therefore decided to apply the following
additional spectral smoother while projecting the raw ensemble estimate of the CO2 or CH4 variances in
the spectral space:

ρ (n) = 1+(α −1)
[

n(n+1)
Ntrunc (Ntrunc +1)

]β

(4)

where n is the spectral wave number, Ntrunc is the truncation wave number, α is the reduction factor and
β the exponent for the spectral smoother. After several tests, we decided to use the following values for
this smoother: α = 100 and β = 2, as the noise was removed using these values (Fig. 5c).

The effect of the supplementary smoother and the filter on the power spectra of the CO2 and CH4 variance
is illustrated Fig. 6. The filtering using the filter for the U component of wind reduces the energy in the
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(a) Standard deviation from the ensemble

(b) Same as (a) but after after additional filtering

(c) Same as (b) but smoothing

Figure 5: CO2 standard deviation at the surface (in ppm) from the EDA on 1 October, 2014 at 9 UTC.
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(a) CO2 Level 137 (surface) (b) CO2 Level 114 (≈ 850 hPa) (c) CO2 Level 96 (≈ 500 hPa)

(d) CH4 Level 137 (surface) (e) CH4Level 114 (≈ 850 hPa) (f) CH4Level 96 (≈ 500 hPa)

Figure 6: Power spectra (in ppm4) of the ensemble short-range (t+9h) CO2 forecast variance (top pan-
els) and CH4 forecast variance (bottom panels) on 1 October, 2014 for 3 model levels. The blue line is
the estimation from 25 members. The green line is the estimation after smoothing. The red line is the

estimation after smoothing and filtering.

smaller scales, but not to a large extent. This indicates that our hypothesis that the dominant source of
atmospheric tracers variability comes from meteorological variability is not quite right and atmospheric
tracers variability is much higher than the variability of the U component of wind. The smoother reduces
much further the energy in the smaller scales, starting from the wavenumber n = 30 (for a truncation
Ntrunc = 159).

2.4 Background error calibration

It is well-known that the spread in the EDA members is not large enough compared to the expected
background error (Bonavita et al., 2012). To deal with this issue, the approach of Bonavita et al. (2012)
consists of calibrating the EDA spread to enforce statistical consistency between the EDA variance es-
timates and the diagnosed ensemble mean background error. We followed this approach for the C-EDA
where the spread Σ is computed using M CO2 or CH4 model fields xxxm from 3-hr short-range forecasts
starting from the M previous analyses,

Σ =
1

M−1

M

∑
m=1

(xxxm − xxx)2 , (5)
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where xxx is the average of xxxm over the M members. The ensemble mean background error Ω is diagnosed
with

Ω =
M

M+1

(
1
M

M

∑
m=1

xxxm − yyy

)2

, (6)

where yyy should be the true state. In operations, the high resolution deterministic forecast is used as a
proxy for the true state yyy of the meteorological fields. Here, we do not have a high resolution deterministic
forecast. We could use the control (member of the C-EDA without perturbation), but the difference
between the members and the control does not account for all the sources of background error. We
therefore use the forecast from an experiment similar to the control. The only difference between them is
the fact that the background error statistics of the meteorological analyses variables come from an EDA
for the reference experiment used as yyy, while the background error statistics are static in the C-EDA
control. This helps to account for more sources of background error but it is probably not enough.

The C-EDA spread Σ is split into bins and latitude band (Northern Hemisphere, Tropics, Southern Hemi-
sphere) for each variable. For each subset, the corresponding C-EDA spread Σ is rescaled to ensure the
equality with the corresponding ensemble mean background error Ω over a period of several days (see
Bonavita et al. (2012) for more details on the methodology).

3 Experiments configuration

We ran three C-EDA experiments in various configurations with CO2 and CH4 as part of the C-IFS atmo-
spheric tracers (see details of the configurations below). The resolution of the experiments is TL255L137.
Every experiment is run using 25 members and starts on 1 October, 2014 for a period of 20 days. Dur-
ing this period, we are assimilating column-averaged dry-air mole fractions of CO2 (XCO2) from the
Greenhouse gases Observing Satellite (GOSAT). More details on the configuration of the assimilation
of XCO2 GOSAT data can be found in Massart et al. (2015). In brief, XCO2 GOSAT data are sparse
in space (about 50 datapoints per assimilation cycle), only available over land and during daylight, and
sensitive to the lower troposphere. We also assimilate column-averaged dry-air mole fractions of CH4
(XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI). More details on the configura-
tion of the assimilation of XCH4 IASI data can be found in Massart et al. (2014). In brief, XCH4 IASI
data are dense in space, over ocean and land and during day and night time, and sensitive to the middle
troposphere.

The details of the three experiments we ran are summarized Table 1 and described below:

1. BASIC : experiment similar to the classic EDA, but with the addition of CO2 and CH4. Note
that CO2 surface fluxes are indirectly perturbed due to the perturbation of the model physical
tendencies.

2. FLUX : experiment with perturbation of CO2 and CH4 surface fluxes as described previously. For
both CO2 and CH4, the amplitude of the perturbation is α=25% and the time decorrelation length
is σw = 3 time steps. For CH4, the spatial correlation length scale is about 150 km at the equator
(σw = 3 grid points for a perturbation field build on a regular 0.45◦×0.45◦ grid).

3. ALL : same experiment as FLUX , but with perturbations on CO2 and CH4 tendencies.
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Table 1: List of C-EDA experiments used in this report. For each experiment, Exp. is the name used
in the report to refer to this experiment, Flux pert. indicates if the fluxes where directly perturbed,
Tendency pert. indicates if the CO2 and CH4 physical tendencies where perturbed, Exp. Id. is the

experiment id, and Colour code is the colour used in the figures to refer to this experiment.

Exp. Flux pert. Tendency pert. Exp. Id. Colour code
BASIC no no gdz5
FLUX yes no gehi
ALL yes yes gehx

4 Results

4.1 Time evolution of the standard deviation

For each C-EDA experiment, each analysis time and each level we computed the ensemble standard
deviation of the CO2 and CH4 fields from the 25 ensemble of 3-hr forecasts. We then computed a
global average of the ensemble standard deviation in order to have the time evolution of the global
average. Figure 7 presents the time series of the global averages for 3 specific levels: the surface, a level
corresponding to about 850 hPa (lower troposphere) and a level corresponding to about 500 hPa (middle
troposphere).

(a) CO2 Level 137 (surface) (b) CO2 Level 114 (≈ 850 hPa) (c) CO2 Level 96 (≈ 500 hPa)

(d) CH4 Level 137 (surface) (e) CH4 Level 114 (≈ 850 hPa) (f) CH4 Level 96 (≈ 500 hPa)

Figure 7: Time evolution of the global average of the ensemble spread for CO2: (a) to (c) and for CH4:
(d) to (f) for 3 model levels. The different colours are for different experiments (see Tab. 1 for details).
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4.1.1 Surface evolution

At the surface, the global averages of CO2 and CH4 ensemble standard deviation have significantly
different values for the various experiments (Figs. 7a and d). For CO2, with only the perturbation of the
meteorological parameter, the BASIC experiment has an ensemble standard deviation of about 1.6 ppm on
average. With the perturbation of the fluxes, the ensemble standard deviation from the FLUX experiment
is about 2.5 ppm on average. Adding the physical tendency perturbation further increases the ensemble
standard deviation to a value of about 3 ppm on average for the ALL experiment. This means that
introducing more perturbation allowed to almost double the CO2 spread between the members at the
surface. Similar ratios between the experiments are found for CH4.

A strong diurnal cycle is found in the ensemble standard deviations for CO2 and CH4 for the three C-
EDA experiments. The time variations of CO2 and CH4 fields at the surface are mainly caused by the
changes of the fluxes, the transport (with the vertical mixing in particular) and the boundary layer height.
It is nevertheless unexpected to find such a strong diurnal cycle in global average as the diurnal cycle is
different for each point of the globe. The reason behind this behaviour is that global averages of CO2
and CH4 ensemble standard deviations are largely influence by the values over some regions where the
ensemble standard deviation is much higher than elsewhere (see Sec 4.2).

(a) CO2 Level 137 (surface) (b) CO2 Level 114 (≈ 850 hPa) (c) CO2 Level 96 (≈ 500 hPa)

(d) CH4 Level 137 (surface) (e) CH4 Level 114 (≈ 850 hPa) (f) CH4 Level 96 (≈ 500 hPa)

Figure 8: Time evolution of the regional averages of the ensemble spread for CO2: (a) to (c) and for
CH4: (d) to (f) for 3 model levels. The different line styles are for different regions: dash line for
Southern Hemisphere (SH, latitude ≤ 20◦S ), full line for Tropics (Trop, latitude ≥ 20◦S and ≤ 20◦N)

and dotted line Northern Hemisphere (NH, latitude ≥ 20◦N).

For CH4 the surface fluxes are constant during the day and they vary slowly from day to day. The diurnal
cycle of the CH4 ensemble standard deviation is then most likely to come from the variability of the
transport. For CO2 the biogenic surface fluxes vary with the meteorological forcing. This could explain
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why we have more day-to-day differences in the CO2 ensemble standard deviation than in the CH4 one.
As an example, around 14 October, the CO2 ensemble standard deviation at the surface does not vary as
much as for the rest of the period (Fig. 7a).

For the ALL experiment, we decomposed the global average ensemble standard deviations by regional
averages: Southern Hemisphere (SH, latitude ≤ 20◦S ), Tropics (Trop, latitude ≥ 20◦S and ≤ 20◦N) and
Northern Hemisphere (NH, latitude ≥ 20◦N). For CO2, the ensemble standard deviation is higher in the
Tropics, with values more than twice the values of the NH and ten times the values of the SH (Fig. 8a).
This difference between the regions could be explained firstly by the fact that the CO2 surface fluxes are
stronger over the Tropics especially in October when the NH senescence season started. Because the
perturbation of the surface fluxes is multiplicative, the stronger the fluxes the larger the perturbation of
the fluxes and the larger the spread between the members for the CO2 concentration at the surface. The
enhancement of the CO2 ensemble standard deviation over the Tropics could also be a consequence of
the response of the biogenic CO2 surface fluxes with the meteorological forcing which is higher in this
region.

The ensemble standard deviation of CH4 at the surface is similar for the Tropics and NH with values
about 6 times larger than for SH (Fig. 8d). CH4 surfaces fluxes are much higher over land than over
ocean. Due to the multiplicative perturbation of surface fluxes the spread of the surface fluxes between
the ensemble members is larger over land than over ocean. As a consequence, the spread and therefore
the ensemble standard deviation are larger at the surface for the CH4 concentration over land. SH being
mostly covered by water, the CH4 ensemble standard deviation is lower than the two other regions. NH
and Tropics have similar spread of CH4 at the surface unlike CO2 because of the non interaction between
the meteorological forcing and CH4 surface fluxes.

4.1.2 Middle troposphere evolution

The global averages of CO2 and CH4 ensemble standard deviation at ≈850 hPa and 500 hPa are growing
during the first days before reaching a plateau for almost all experiments (Fig. 7). The spin up period
is between 5 and 10 days, but the plateau is not completely reached after 20 days for the FLUX and
ALL experiments for CO2 at ≈500 hPa (Fig. 7c).

The initial conditions are the same for all members of the ensemble for both the meteorological fields
and the greenhouse gases fields. The spin up period is the time during which the initial conditions are
forgotten and after which each member becomes more independent to the others.

At these levels (≈850 hPa and 500 hPa), the spread between the member of the ensemble for CO2 and
CH4 comes directly from the assimilation of perturbed observations, directly from the spread of the
meteorological forcing (different transport between the members) and indirectly from the CO2 and CH4
spread at the surface that is slowly transported vertically. The comparison between the BASIC and the
FLUX experiments indicates how each process (direct and indirect) impacts the spread of the ensemble.

For CH4, the ALL experiment has slightly higher values of the global average ensemble spread than
the FLUX experiment and the FLUX experiment has higher values than the BASIC one at ≈850 hPa
(Fig. 7e). At ≈500 hPa, they all have similar global average ensemble spread (Fig. 7f). This means that
the perturbation of the CH4 fluxes has less impact in the CH4 ensemble standard deviation in the middle
atmosphere. The impact of the perturbation of the greenhouse gases tendencies is also weak at ≈850 hPa
and almost null at ≈500 hPa.

For CO2, the perturbation of the surface fluxes and the perturbation of the tendencies have more impact
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on the global averages of the ensemble standard deviation (Figs. 7b and c). At ≈850 hPa, the perturbation
of the surface fluxes increases by about 50% the standard deviation. This perturbation is also the reason
why the spin up period is longer at ≈500 hPa. Moreover, the diurnal signal found at the surface is still
present at higher altitudes, but it is strongly reduced.

4.2 Calibration

As described in Section 2.4, we computed the spread Σ for three regions (NH, Tropics and SH). For each
Σ, we computed the equivalent ensemble mean background error Ω and arranges each Σ/Ω pair into 10
bins according to their values. For each bin, we computed the average of each pair over a period covering
the last 10 days of the period under study, so we removed the first 10 days in order to account for the
spin up period. The result is the skill/spread plots of Fig. 9 for CO2 and Fig. 10 for CH4. However, it is
worth noticing that the discussion hereafter relies on the computation of the ensemble mean background
error Ω and the choice of the experiment from where we get the true state yyy of Eq. (6).

The skill/spread plots at the surface show that the BASIC experiment does not have enough spread in
general for CO2 (Figs. 9a, d and g) and for CH4 (Figs. 10a, d and g). It is particularly the case for the
whole range of Σ values for NH, and for the largest values of Σ for SH, which are found over land (not
shown). The highest values of Σ for the Tropics and for CO2 are the only ones for which Σ and Ω are
similar. The highest values of Σ for the Tropics are most likely associated with the biogenic CO2 sur-
face fluxes (that are influenced by the meteorological situation). The perturbation of the meteorological
forcing over the Tropics seems then to bring enough variability to the the biogenic CO2 surface fluxes.

Adding further perturbation to the surface fluxes makes the FLUX experiment have a better Σ/Ω ratio
than the BASIC experiment for CO2, except for the high values of Σ for CO2 and for the whole range
of Σ values for CH4. This means that first the CO2 surface flux perturbation helps to improve the CO2
ensemble spread at the surface. The amplitude of the perturbation of α=25% seems nevertheless to be
too much, or, if the highest values of Σ are associated with the highest values of the biogenic fluxes,
the choice of a multiplicative perturbation could not be the best option. For CH4, the amplitude of the
perturbation of α=25% is for sure too much, but the choice of the multiplicative perturbation seems
relevant as all the Σ bins have a similar Σ/Ω ratio. Adding the perturbation of the tendencies further
increases the spread as described section 4.1 which makes the ALL experiment having too much spread
at the surface for both CO2 and CH4.

Higher up in the troposphere, the BASIC experiment already has a spread Σ similar or higher than the
mean background error Ω for both CO2 (Figs. 9b, e, h for ≈850 hPa and Figs. 9c, f, i for ≈ 500 hPa) and
CH4 (Figs. 10b, e and h for ≈850 hPa and Figs. 10c, f and i for ≈ 500 hPa). We showed in section 4.1 that
the spread of the ensemble is increased at these model levels by adding the perturbation of the surface
fluxes and the perturbation of CO2 and CH4 tendencies. As a consequence, the spread is too large for
CO2 and CH4 at these model levels for the FLUX and ALL experiments.

We finally computed the time average of the global mean of the raw ensemble standard deviation and the
scaled ensemble standard deviation over the last ten days of the simulations and for each model level.
Figure 11 presents the ratio between the averages for CO2 and CH4 and for the three C-EDA experiments
as a function of the model level. It confirms the previous findings, namely (i) a too low spread in the
BASIC experiment in the lower troposphere and down to the surface and (ii) a too large spread in the two
other C-EDA experiments. Moreover, it shows that the introduction of direct surface flux perturbation
of CO2 impacts the ensemble spread on the whole troposphere (up to about model level 60) and the
stratosphere as well (up to about model level 20). This is also true for CH4 but to a less extend.
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(a) NH Lev. 137 (surface) (b) NH Lev. 114 (≈ 850 hPa) (c) NH Lev. 96 (≈ 500 hPa)

(d) TR Lev. 137 (surface) (e) TR Lev. 114 (≈ 850 hPa) (f) TR Lev. 96 (≈ 500 hPa)

(g) SH Lev. 137 (surface) (h) SH Lev. 114 (≈ 850 hPa) (i) SH Lev. 96 (≈ 500 hPa)

Figure 9: Spread-error diagram for CO2 for three model levels (left to right) and three regions (top to
bottom), averaged over the last 10 days of the period under study.
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(a) NH Lev. 137 (surface) (b) NH Lev. 114 (≈ 850 hPa) (c) NH Lev. 96 (≈ 500 hPa)

(d) TR Lev. 137 (surface) (e) TR Lev. 114 (≈ 850 hPa) (f) TR Lev. 96 (≈ 500 hPa)

(g) SH Lev. 137 (surface) (h) SH Lev. 114 (≈ 850 hPa) (i) SH Lev. 96 (≈ 500 hPa)

Figure 10: Same as Fig.9 but for CH4.

Technical Memorandum No. 780 17



EDA for CAMS’s GHGs analysis

(a) CO2 (b) CH4

Figure 11: Ratio between the time and space averages of the scaled ensemble standard deviation and
the raw ensemble standard deviation for (a) CO2 and (b) CH4 as a function of model levels. Results for

the period 10–20 October. Dotted vertical lines for model level 114 and 96.
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4.3 Scaled ensemble standard deviation

In this section, we discuss the difference between the scaled ensemble standard deviation of CO2 and
CH4 of the three experiments. We are focusing on the same three model levels as previously and on
the ensemble standard deviation computed for the 0900Z analysis. We also present the scaled ensemble
standard deviation for the 2100Z analysis for the ALL experiment and the three selected model levels.

(a) Lev. 137 - Basic - 0900Z (b) Lev. 114 - Basic - 0900Z (c) Lev. 96 - Basic - 0900Z

(d) Lev. 137 - Flux - 0900Z (e) Lev. 114 - Flux - 0900Z (f) Lev. 96 - Flux - 0900Z

(g) Lev. 137 - All - 0900Z (h) Lev. 114 - All - 0900Z (i) Lev. 96 - All - 0900Z

(j) Lev. 137 - All - 2100Z (k) Lev. 114 - All - 2100Z (l) Lev. 96 - All - 2100Z

Figure 12: Scaled standard deviation of CO2 (in ppm) averaged over a period between 10 and 20 October
for three C-EDA experiments (top to bottom) and for three model levels: from left to right, surface (level
137), ≈ 850 hPa (level 114) and ≈ 500 hPa (level 96). The scaled standard deviation is averaged for

the 0900Z analysis apart for the last experiment where the 2100Z analysis is also presented.

Figures 12 and 13 show that for each level the large scale structures in the CO2 and CH4 scaled ensemble
standard deviation are similar for the three experiments. This suggests that the calibration method allows
to compensate the lack or excess of spread depending on the experiment. There are nevertheless some
differences. For example the CO2 scaled ensemble standard deviation has lower values over Central and
West Africa at the surface for the BASIC experiment than for the two other experiments. The background
value is on the other hand larger for the BASIC experiment than for the others from model levels 114
to 96. For CH4, the scaled ensemble standard deviation has larger values over Asia at the surface for the
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BASIC experiment, and the background value is also larger, especially at high latitudes north.

The diurnal cycle discussed in section 4.1 is also well illustrated in the scaled ensemble standard devi-
ation maps at the surface for CO2 (Figs 12 g and j) and for CH4 (Figs 13 g and j). The spread is larger
over Amazon than elsewhere for the 0900Z analysis, and larger over the Tropical Africa (for CO2) and in
Asia (for CO2 and CH4) for the 2100Z analysis. This highlights the effect of the boundary layer height.
Higher up in the troposphere, the scaled ensemble standard deviation is much less sensitive to the diurnal
cycle.

(a) Lev. 137 - Basic - 0900Z (b) Lev. 114 - Basic - 0900Z (c) Lev. 96 - Basic - 0900Z

(d) Lev. 137 - Flux - 0900Z (e) Lev. 114 - Flux - 0900Z (f) Lev. 96 - Flux - 0900Z

(g) Lev. 137 - All - 0900Z (h) Lev. 114 - All - 0900Z (i) Lev. 96 - All - 0900Z

(j) Lev. 137 - All - 2100Z (k) Lev. 114 - All - 2100Z (l) Lev. 96 - All - 2100Z

Figure 13: Same as Fig. 12 but for CH4 (in ppb)

4.4 Spatial correlation

We finally investigated the spatial correlation of the background error. For that purpose, we computed
the spatial correlation between the ensemble error of a given point of the grid and the ensemble error of
the surrounding points. We estimated the ensemble error by removing the value of the control to each of
the 25 members of the ensemble. We also concatenated the ensemble errors computed over the last 10
days of the period under study. This allows to increase the sample and to have more significance in the
computed correlation.
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(a) Lev. 137 - Basic - 0900Z (b) Lev. 114 - Basic - 0900Z (c) Lev. 96 - Basic - 0900Z

(d) Lev. 137 - Flux - 0900Z (e) Lev. 114 - Flux - 0900Z (f) Lev. 96 - Flux - 0900Z

(g) Lev. 137 - All - 0900Z (h) Lev. 114 - All - 0900Z (i) Lev. 96 - All - 0900Z

(j) Lev. 137 - All - 2100Z (k) Lev. 114 - All - 2100Z (l) Lev. 96 - All - 2100Z

Figure 14: Background error spatial correlation of CO2 at various points of the Global separated by
about 25◦ (cyan squares) and averaged over the period between 10 and 20 October for the 0900Z anal-
ysis. From left to right: model levels, from top to bottom: BASIC , FLUX and ALL experiment. The last
row is for the 2100Z analysis of the ALL experiment. Dark red for correlation of 1 to dark blue for a

correlation of -1, with a 0.1 contour interval.
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(a) Lev. 137 - Basic - 0900Z (b) Lev. 114 - Basic - 0900Z (c) Lev. 96 - Basic - 0900Z

(d) Lev. 137 - Flux - 0900Z (e) Lev. 114 - Flux - 0900Z (f) Lev. 96 - Flux - 0900Z

(g) Lev. 137 - All - 0900Z (h) Lev. 114 - All - 0900Z (i) Lev. 96 - All - 0900Z

(j) Lev. 137 - All - 2100Z (k) Lev. 114 - All - 2100Z (l) Lev. 96 - All - 2100Z

Figure 15: Same as Fig. 14 but for CH4.
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We repeated the above procedure for several points of the globe to have an overview of the spatial
distribution of the spatial correlation of the background error. We also computed the spatial correlation
for the same three model levels and for the three C-EDA experiments as before, and only for the 0900Z
analysis.For the ALL experiment, we also computed the spatial correlation for the 2100Z analysis.

Figure 14 presents the results for CO2. It shows that the shape of the spatial correlation varies a lot
between the various selected locations at the surface for the BASIC experiment (Fig. 14a). For example,
the spatial correlation of the CO2 background error has a much larger spread for the point located in
Northern Africa than for the points located in Central and West Africa. This reflects the difference
between regions affected by local sources and other regions more representative of background CO2.
Another example is the different shapes of the spatial correlation over Europe from West to East, even if
the correlation length is similar. A key feature is the weak correlation of the background error between
land and ocean with for example the ocean points close to the Southern Africa coast or the land point
close to Iran coast. Higher up in the atmosphere, this feature disappears and elsewhere the correlation
structures are similar that the one at the surface (Figs. 14b and c).

The addition of more direct perturbation of the surface fluxes in the FLUX experiment increases the length
scale of the spatial correlation where they were narrow in the BASIC experiment (Figs. 14d to 14f). This
increase is particularly important at the surface for the two points of Central and West Africa, and for
the points over Europe to a lesser extend. The CO2 tendency perturbation in the ALL experiment hardly
impacts the shape of the spatial correlation (Figs. 14g to i). There are nevertheless few differences like
for the ocean point located near the west coast of Northern Africa for which the ALL experiments does
not present negative correlations like the FLUX experiment at 500 hPa.

The difference in the ALL experiment between the 0900Z analysis and the 2100Z analysis is more the
shape of the CO2 spatial correlation of the background error than in the size of the characteristic length
scale (Figs. 14j to l). For example, over Central Europe, the spatial correlation has a more noisy shape
for the 2100Z analysis than for the 0900Z analysis at the surface. Another example is the presence of
negative correlation for the point located in the middle of the Indian Ocean in the 2100Z analysis, where
the correlation are smoother in the 0900Z analysis

Figure 15 presents the results for CH4. The conclusions one can draw from it are similar to the con-
clusions for CO2. The shape of the CH4 spatial correlation varies across the globe. The characteristic
length scale of the spatial correlation is nevertheless smaller for CH4 than for CO2. The increase of the
characteristic length scale due to the addition of perturbation on the surface fluxes is also smaller than
for CO2. Lastly, there are some differences between the 0900Z analysis and the 2100Z analysis too.

5 Conclusions

The Ensemble of Data Assimilations (EDA) is currently the method chosen at ECMWF to estimate the
background error statistics for the meteorological analysis. We are investigating the use of the EDA to
also estimate the background error statistics for the atmospheric tracers analysis in Composition-IFS (C-
IFS). This report presents the first step by describing specific modifications of the current EDA to account
for particularities of atmospheric tracers. The resulting configuration is referred to as Composition-EDA
(C-EDA).

We focused the document on two of the main greenhouse gases: carbon dioxide (CO2) and methane
(CH4). As for other atmospheric tracers, CO2 and CH4 are highly sensitive to the surface fluxes. One
modification brought to C-EDA was to perturb the surface fluxes in order to represent the uncertainty
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associated with them. Two types of surface fluxes perturbations were implemented. For CO2 we chose to
perturb some parameters of the surface fluxes model. For CH4 we chose a more familiar approach using
a two-dimensional perturbation field. Another perturbation was added on the CO2 and CH4 tendencies
as for the physical tendencies in the default EDA. This adds indirect perturbation of the CO2 and CH4
surface fluxes as the surface fluxes are transformed as tendencies in the boundary layer through the
vertical mixing in C-IFS. For CH4, this adds perturbation of the chemical tendency.

A default C-EDA experiment was run with only perturbation of the meteorological parameters. This
experiment showed that the spread of the ensemble is larger at the surface than in the troposphere for both
CO2 and CH4. Moreover the ensemble standard deviation has a strong diurnal cycle at the surface and
has strong spatial variations at the surface and higher up in the troposphere. This is an important result
as the current standard deviation of the background error is assumed to be constant in time and space
for the assimilation. The first main conclusion of this work is that a time and space dependent standard
deviation of the background error should be implemented in the assimilation of atmospheric tracers.
We showed that the spatial correlation of the background error has a time dependence too comparing
the 0900Z analysis with the 2100Z analysis. Having a fully time-dependent background error (standard
deviation and correlation) should also benefit the analysis of atmospheric tracers.

Even if the spread of the ensemble is larger at the surface, it is estimated to be too low when comparing
to the ensemble mean background error. Adding directly a perturbation on the surface fluxes helps
increasing the ensemble spread, but it is found that the current amplitude of the perturbation (25%) is too
large. On the other hand, posterior diagnostics suggest that the ensemble standard deviation is still too
low with these perturbations on the surface fluxes. The computation of the calibration of the ensemble
standard deviation may have to be revisited. The calibration of the ensemble standard deviation of the
meteorological parameters is carried out using the high resolution deterministic forecast as the truth to
estimate the ensemble mean background error. Here, we used an experiment with a configuration very
similar to the ensemble control. Therefore the ensemble mean background error may be too low.

In this report, we chose two types of surface flux perturbations with a given amplitude, a given decor-
relation time scale and a given spatial decorrelation scale for CH4 surface fluxes. We proved that the
perturbation of the surface fluxes have an influence on the ensemble standard deviation even after the
calibration, and an influence on the spatial correlation of the background error.

The method implemented in this document to perturb the surface fluxes is derived from the methodol-
ogy used for the EDA. One difference is that the surface fluxes are directly perturbed and not only the
tendencies. This could be further improved by having different surface flux perturbations for different
emission categories (anthropogenic and biogenic for example) or depending on the surface (sea or land).
For instance, the localisation of anthropogenic surface fluxes is well known, with usually a low length
scale for the error correlation and potentially high uncertainty in the amplitude. The localisation of CH4
fluxes could vary significantly depending on atmospheric conditions and the length scale for the error
correlation could be large, as the error is likely to be correlated over the surface covered by the wetland.
Having a better representation of the surface fluxes uncertainty in the C-EDA would allow to have a
better estimate of the CO2 and CH4 uncertainty and therefore should improve the quality of the analysis.

Acknowledgements

The authors would like to thank Anna Agustı́-Panareda, Antje Inness and Richard Engelen for providing
comments and suggestions on preliminary versions of this document. The authors are also grateful to
Elı́as Hólm for his help while learning to run an EDA experiment at an early stage.

24 Technical Memorandum No. 780



EDA for CAMS’s GHGs analysis

References

Agustı́-Panareda, A., Massart, S., Chevallier, F., Balsamo, G., Boussetta, S., Dutra, E., and Beljaars,
A. (2016). A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global
atmospheric CO2 analyses and forecasts. Atmos. Chem. Phys. Discuss., 2016:1–45.

Agustı́-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P.,
Deutscher, N. M., Engelen, R., Jones, L., Kivi, R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen,
A. T., Wennberg, P. O., and Wunch, D. (2014). Forecasting global atmospheric CO2. Atmos. Chem.
Phys., 14(21):11959–11983.
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