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Focusing on Wind - Precipitation & Storm Surge Impact(s) l



Storm surge Vs significant wave height observations at HVH / LIC
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Storm surge (m) risk management SyStem

with emphasis

IPCC, 2012: Compound Events

special category of weather / climate extremes, resulting

on such compound events,
by linking satellite monitoring,

from the combination of two or more events, i.e. extremes coupled wave, tide and

either from a statistical perspective (tails of distribution) surge forecasting, inundation

or associated with a specific (critical) threshold(s) ... modelling and impact analysis
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Estimating joint probabilities by utilising statistical dependencies of component events

Statistical dependence (chi) of storm surge and significant wave height values

If one variable exceeds a certain (extreme) threshold I

. . . What is th '
- then dependence ( y ) is the risk of the other variable %f'fhiszg;ff ?mg Dependence can modulate

will also exceed an extreme threshold

Joint Return Period ...

Selecting ; )
an optimal threshold ? 1 : Firstly
: to have enough data points
above the threshold
to be able
to determine dependence
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and secondly
the threshold
to be high enough
to regard the values as extreme
(Svensson and Jones 2003)
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Example of how statistical dependence (chi) Utilizing matlab routines to fit GEV

modulates joint return period (General Extreme Value) Distributions
to surge & wave values

ey = Sl v Padies both 100-year return period values
of total hindcast datasets

Tx = Return Period (surge) for HVH (storm surge) / LIC (significant wave)

Ty = Return Period (wave) were estimated ...

Probability of the combined event in total hindcasts mode However, in case of chi = 0.57

surge = 1.78 & wave height = 6.05 meters JRP = 174.95 years

to be exceeded in a year Then probability of exceeding

if considered independent events is given by = 1 /Joint Return Period = 1/174.95 = 0.0057
1/100 x 1/100 = 1 / 10,000 = 0.0001% (~57 times higher)

Svensson & Jones, 2003. Dependence between extreme sea surge, river flow & precipitation:
A study in south & west Britain. R&D Interim Technical Report FD2308/TR3 to Defra. CEH Wallingford, UK.




Considering U and V with distributions [ O, 1 ]

and a critical threshold (u) since we are dfter the The theoretical return period

Joint Return Period ... Txy is the inverse of the probability

PV >u|U>u)= PU >,V >u) so, we need the value

P(U > u) of dependence that a certain event will be

exceeded in any one year ...

lnP(U <u,V < u) for 0<y <1

——
In P(U < u) To define the number of extremes

two (2) methodologies exist

7 of (X_,Y) suchthat X < x*and Y < y* T I " .
Total number of (X,Y) XY z - Annual (Block) Maxima &
- Peaks-Over-Threshold (POT)

1 In Number of X <x Number of Y <y*
2 | Total number of X Total number of Y

Svensson & Jones, 2003. Dependence between extreme sea surge, river flow & precipitation:
A study in south & west Britain. R&D Interim Technical Report FD2308/TR3 to Defra. CEH Wallingford, UK.




From Svensson & Jones (2003)

storm surge

If a is the annual maximum significant wave height

99th percentile (surge)

929th percentile (wave)

non-exceedance probability

a = Prob(Annual maximum < x)

then Return Period: Ta = 1 / (1-a)

For Peaks-Over-Threshold (POT)

Not referring to an annual maximum

Storm surge (m) / Significant wave height (m)

with p as non-exceedance probability

of POT series Surge Vs Wave Hindcasts

Storm surge and significant wave height observations at HVH / LIC (1st 525 days)
T | T | | T T | |

X471
Y:5.14
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and the rate of A events per year Days

a=exp (-A(1-p) ) .. Forour estimations we adapt
~2.3 events / yearly to exceed that 2 a = 0.1 ...
based on the number of the events being allowed to exceed yearly ~2.3 (max ~2.5)

we have the ability to define an appropriate percentile threshold

400 450 500

POT example of skipping
consecutive events
falling inside

3-day block ...




Statistical dependence (chi) between storm surge and significant wave height max24 (total hindcasts)

Statistical Dependence (chi)

-0.2

0.8¢

0.6

0.4 -

0.2 -

& | | | | Ny | | | |

Dependence of Surge & Wave
for RIEN of Rhine (NL) e

Optimal threshold is primarily based on
selecting a threshold percentile
corresponding to ~2.3 - 2.5
compound events yearly

BUT: beware of stability !ll |

Statistical dependence (chi) between storm surge and significant wave height max24 (total hindcasts)
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Study over 32 RIEN tomur &

(River Ending) Points
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Variables Start End No. of days
Waves — HS / Storm Surge 1 Jan 1980 30 Nov 2014 12,753
Waves — HS / River Discharge 1 Jan 1950 9 Oct 2013 8,683
Storm Surge / River Discharge 1 Jan 1950 9 Oct 2013 8,683
Observations
Variables Start End No. of days
LIC Waves — HS / HVH Storm Surge 22 Sep 2010 30 Dec 2014 1,561
LIC Waves / LOB River Discharge 22 Sep 2010 30 Dec 2014 1,561
HVH Storm Surge / LOB River Discharge 4 Apr 2010 30 Dec 2014 1,732
Hindcasts / Observations
Common Interval for Validation 22 Sep 2010 9 Oct 2013 1,114




Study over 32 RIEN (River Ending) Points

Utilising Hindcasts of Storm Surge, Significant Wave Height & River Discharges

—> Storm surge hindcasts were performed by utilising the hydrodynamic model Delft3D-Flow (resol. 0.2 x 0.2 deq)
forced by wind and pressure terms from ECMWF ERA-Interim reanalysis

- Wave hindcasts were generated by latest version of ECMWF ECWAM wave (stand-alone) model (resol. 0.25 x 0.25 deq),
forced by neutral wind terms from ERA-Interim

- For river discharge hindcasts the LISFLOOD model developed by the floods group
of the Natural Hazards Project of the Joint Research Centre (JRC), was employed (resol. 5 x 5 km)

-> Validation of hindcasts was made over the RIEN (River Ending) point of river Rhine (NL)
where coincident observations were available

—> Considering the physical driver complexity behind interactions among surge, wave height and discharge variables
hindcasts were found to perform quite well, not only simulating observation values over the common interval of interest,

but also in resolving the right type and strength of both correlation and statistical dependence



Observations (m)

Daily maximum storm surge hindcasts Vs observations for HVH (1,114 days)
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Daily maximum significant wave height hindcasts Vs observations for LIC buoy (1,114 days) Daily maximum river discharge hindcasts Vs observations for Lobith (1,114 days)
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Storm surge Vs significant wave height values in observations mode (1,114 days)
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Significant wave height (m)

Storm surge Vs significant wave height values in hindcast mode (1,114 days)
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Statistical dependence (chi) of storm surge and significant wave height values
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Pretty well ...




Statistical dependence (chi)

Statistical dependence (chi)

Statistical dependence (chi) of storm surge and river discharge values
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0 ge & River D arqge = ode
lead thres R (chiplot) max mat_chi | max (mat) | lag | R (taildep) R max
obs s/d 9200 01798 02939 0.14350 < 02571 > @ 02020 03161
hind s/d 9249 00815 02444 | 0.0874 ( 0.2503 ) @ 01571 0.3200
total s/d 9249 0.0897 02272 | 0.0754 02129 6 0.1468 0.2843

- Storm surge and river discharge hindcasts exhibit|almost identical

(max-lag) values of statistical dependence with observations

q 3 ave & River D arqge = 0de
lead | thres R (chiplot) max mat_chi max (mat) | lag | R (taildep) R max
obs | w/d | 90% | 00996 | 02145 @ 01346 | 02495
hind | w/d | 90% | 01001 | 02972 01346 | 03317
total | w/d | 90% 0.0900 02544 | 0.0823 0.2467 7 0.1704 0.3348
—> Significant wave and river discharge hindcasts exhibit similar| (max-

lag) values of statistical dependence with observations




Dependencies of All Categories

-
I / Surge / Wave Max24 \
P Lag in Days: O
e J — Surge / Wave Max12
0.45 ]
éi 0.57 w_ 3 kWave | Discharge _ — Surge / Discharge /
X o 2 7 |
®
\ rl 0.55 » Examples of statistical dependence
e “ for storm surge & wave Adaptation of Svensson & Jones, 2003 Tables
< O , ; within 12-hour interval P d :

= .
N % 0.64 in zero-lag mode - Dependence (chi) | Category
/1 ; ' v
| * ~ chi < -0.06 Negative

| : -0.05 < chi < 0.05 Zero

0.06 <chi< 014 Low
' 0.15 < chi< 024 Modest
025 <chi< 034 Well

0.35 < chi < 044 Strong

chi > 045 Very Strong




- =peiiac - =1 e Results are presented by - e - : el
RIEN | River Ocean / Sea S/Wi2 S5/wW24 /,S-H??.k W/ R24 means Of analytl Cal tab les RIEN | River Ocean / Sea L |(S/Wi2 |L|S/ w24 L/}-HE-L\L W/ R24
01 Po (IT) Adriatic Sea mod mod / low Y L low 01 Po (IT) Adriatic Sea 0 mod 0 mod zl//rnod\ \i\\ mod
02 | Metaouro (IT) Adriatic Sea mod mod well od a n d d et a| le d m ap S 02 | Metauro (IT) Adriatic Sea a mod 0 mod a well 0\ mod
03 | Vibrata (IT) Adriatic Sea mod mo mod < od 03 | Vibrata (IT) Adriatic Sea 0] mod 0] mod Z well 1 mod
08 | Rhone (FR) Gulf aof Lion mod mod mod nod refe rri n g to b Oth 08 | Rhone (FR) Gulf of Lion 05 mod 0 mod 4 well 2 y mod
04 | Foix (ES) Balearic Sea mod low \ N, Tod mod 04 | Foix (ES) Balearic Sea 0] mod ] low \\ mod ./6/’ mod
05 | Ebro (ES) Balearic Sea mod mod N~z104—1 mod corre l atl on an d 05 | Ebro (ES) Balearic Sea mod 0 mod 3\\mnd//>7 well
06 Velez (ES) Alboran Sea low low mod ,..:uqk 06 | Velez (ES) Albaran Sea 0 low 0 low a mod }__@
07 | Sella (ES) W mod mod mod/’| N de pen dence (X) values bein g 07 | Sella (ES) Bayof Biscay | 05| mod |0| mod | 1 moo/ —-msd\\
10 | Moros (FR) I Bay of Biscay mod well m strong 10 | Moros (FR) Bay of Biscay o mod 0 well 0 0 stmng\
11 | Aven (FR) I Bay of Biscay well well well e St| m ated over R | E N po | nts 11 | Aven (FR) Bay of Biscay o well 0 well (0] 3 | strong
12 | Blavet (FR) Bay of Biscay well well mk well 172 | Blavet (FR) Bay of Biscay 0 well 0 well (0] ;i strong
13 | Owenavorragh (IER | Irish Sea strong strong mo\\ mmf/ 13 | Owenavorragh (IE) | Irish Sea 0 | strong | 0| strong | 2 mob\\ 3 r@/}
21 [ Merseyw) | [ inish Sea well well mod YW__mog A It is then straightforward 21 | Mersey (UK) Irish Sea o| wet o] wer | 2| mod N _mot”
20 | Severn (UK) Bristol Channel _ mod mod mod well 20 | Severn (UK) Bristol Charnel 0 mod 0 mod 3 well 3 well
15 | Orkla (NO) | Norwegian Sea | | well well low low to estimate 15 | Orkla (NO} NorwegianSea | O | well |0| well | 2| low | 0| low
16 | Vantaa (FI) | | BatticSea | B strong strong mod low 16 | Vantaa (F1) Baltic Sea 0| strong |0| strong | 0| mod | 2| mod
22 | Tyne (UK) North Sea \ mod mod mod mod the j oint p robab ] [ ] ty vad [ ue 22 | Tyne (UK) North Seq 05| mod |0| mod | 0| mod | 0| mod
27 | Humber (UK} North Sea well mod mod 27 | Humber (UK) North Sea 0 well 0 well o mod 1 mod
14 | Goeta Aelv (SE) North Sea mod low as the inverse o f 14 | Goeta Aelv (SE) | North Sea 05 1 1| mod | 2| mod
17 | Rhine (NL} North Sea mod mod 17 | Rhine (NL) North Sea 1] 4 well 5 well
18 | Weser (DE) North Sea mod mod th e J OI n t re tu m p er I Od 18 | Weser (DE) North Sea o] & well & well
19 | Schelde (BE) North Sea mod ~well 19 | Schelde (BE) North Sea 0] 1 mod 2 well
25 | Thames (UK) mod mod low mod 25 | Thames (UK) North Sea 1 well 1 mod 0 low 1 mod
09 | Bethune (FR) English Channel Org gls mod mod 09 | Bethune (FR) English Channel | O [BEe ] E v. strong [ well 3 well
24 | Avon (UK) English Channel strong strong well well 24 | Avon (UK) English Channel | O strong | 0| strong | 2 well 3 well
26 | Exe (UK) English channel ~strong strong well well 26 | Exe (UK) English channel | 0 | ~strong | O | strong 0 well 1 well
23 | Tamar (UK) English Channel well well well well 23 | Tamar (UK) English Channel | 0 well 0 well o well o well
28 | Danube (RO) Black Sea strong well low low 28 | Danube (RO) Black Seag 05| strong | O well =7 mod o low
21 Doura (PT) Atlantic Ocean well well well strong 31 Douro (PT) Atlantic Ocean g well 0 well 1 well 1 strong
29 Tagus (PT) I Atlantic Ocean mod mod mod well 29 | Tagus (PT) Atlantic Ocean 05 mod 0] mod >7 well 4 well
30 | Sado (PT) I Atlantic Ocean mod mod mod well 30 | Sado (FT) Atlantic Ocean mod | 0| mod 3 well 4 | strong
32 | Guadianna (ES) \ Atlantic Ocean well well mod well 32 | Guadianna (ES) Atlantic Ocean well 0 well well 3 | ~strong




Going After High-Impact Compound Events ...
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Overall, besides the demonstration of how to apply statistical dependence methodologies & techniques

-> The highest values of (strong / very strong) correlations and dependencies were found between surges and waves
mainly over North Sea and English Channel taking place on the same day (zero-lag mode)

- Moderate to well category dependencies were found for most sea areas, also on a zero-lag mode

- In the case of surge and river discharge, moderate to well category values were found in most cases
but NOT in a zero-lag mode as in surge & wave case

- It became clear that in order to achieve such (relatively high) values,
considerable lag time interval of a few days was required with surge clearly leading discharge values

-> For the case of wave and river discharge, well to strong category values were found
but once more mostly in NON-zero lag mode indicating the necessity of a considerable lag time interval
for dependence to reach such (well / strong) values with wave distinctly leading discharge values
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UEF2016, 6-9 June 2016, ECMWF, Reading, U.K.
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