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Outline

What are Extremes?

I Weather and Climate:

Rare, exceptional, ”big” and

potential of high impact

complex and multivariate

phenomena

I Mathematically:

Block maxima or exceedances over

high threshold

Events in tail of distribution

Snow storm Münsterland November 2005

Harald Schmidt Show
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Outline

The verification problem

I Small number of observed events

I Weak representation of extremes in

models – calibration

I Standard verification measures

degenerate as event rarity increases

I Large uncertainties in predictions

and verification measures

From Ferro and Stephenson (2011)
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Outline

1. Extreme value theory

a Univariate extreme value theory

b Bivariate extremes

2. Deterministic prediction/verification

a Contingency table

b Extreme value model

c Extremal dependence indices

3. Probabilistic prediction/verification

a Proper scoring rules

b Proper scoring rules for extremes

c Downscaling of precipitation extremes
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Extreme value theory – univariate
Extreme value theory – bivariate

”Il est impossible que l’improbable n’arrive jamais”

Emil Julius Gumbel (1891-1966)

I Extremal indices

95% quantile of daily precipitation:

9mm im winter, 15mm summer

I Not really extreme!

I Extreme: Q100

”Going beyond the range of the data” (Philippe Naveau)

Probabilistic concept on asymptotic behaviour of extremes
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Extreme value theory ”Going beyond the range of the data”

I Limit theorem for sample maxima

→ asymptotic distribution of extremes

I Condition of max-stability (de Haan, 1984)

→ Maxima follow a generalized extreme value

distribution (GEV)

I universal behaviour of extremes

→ allows for extrapolation!

In praxis not enough – not in asymptotitic limit – bad convergence
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Generalised extreme value distribution (GEV)

Maxima of large samples XN = max{z(1), . . . , z(N)} asymptotically

follow N →∞ a GEV

GX (x) =

 exp(−(1 + ξ x−µσ )−1/ξ)+, ξ 6= 0

exp(− exp(− xfor−µ
σ )), ξ = 0

,

Gumbel (..., shape=0.0)
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Generalised Pareto distribution (GPD)

Analogue to GEV, but for peaks-over-threshold (POT) Y = X − u

asymptotically for u →∞ follow a GPD

HY (y ; u) =

 1−
(

1 + ξ y
σu

)−1/ξ
, ξ 6= 0

1− exp( y
σu

), ξ = 0
,

Years
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Generalised Pareto distribiton (GPD)

GPD class:

ξ = 0 Exponential distribution (Gumbel type)

ξ > 0 Pareto tail (Fréchet type)

ξ < 0 Beta (Weibull type)

dgpd(..., shape=0.0)
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Poisson point process

For high theshold u, Xi > u is asymptotically a Poisson point

process on [0, 1]× (u,∞) with intensity

Λ(A) = (t2 − t1)

(
1 + ξ

(
y − µ
σ

))−1/ξ

.

for A = [t1, t2]× (u, z)

µ, σ and ξ parameter of corresponding GEV

Years
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Multivariate extreme value statistics

Marginal distribution:

I Standard Fréchet or Gumbel

Dependence structure:

I Limit theorem for

multivariate sample maxima

I Max-stability for marginals

and dependence structure

From Schoelzel and Friederichs (2009)
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Extreme value theory – univariate
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Bivariate EVD – dependence structure

Pr(X ≤ x ,Y ≤ y) = exp{−V (x , y)}

χ = lim
z→∞

Pr(X > z |Y > z)

I χ 6= 0 asymptotic dependence

I χ = 0 asymptotic

independence
From Ferro and Stephenson (2011)
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Extreme value theory – univariate
Extreme value theory – bivariate

1. Conclusions

I Extreme value theory – universal law for extreme values

I Univariate – GEV or GPD; Poisson point process

I Multivariate – Marginals and dependence structure

I Max-stability – characteristics of extremes unchanged

I Tail behaviour – shape parameter ξ

I Dependence structure – asymptotic dependence or

independence

Extrapolation to really extreme values
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Contingency table
Extreme value model
Extremal dependence indices

Contingency table for infinite sample
event observed non-event observed

event Pr(X > x ,Y > y) Pr(X ≤ x ,Y > y) Pr(Y > y)

forecasted = Hp = F (1− p)

non-event Pr(X > x ,Y ≤ y) Pr(X ≤ x ,Y ≤ y) Pr(Y ≤ y)

forecasted = (1− H)p = (1− F )(1− p)

Pr(X > x) = p (baserate) Pr(X ≤ x) = 1− p

Petra Friederichs Prediction and verification of extremes 14 / 31
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Contingency table
Extreme value model
Extremal dependence indices

Extreme value model
Transform bivariate random variable

X̃ = − log(1− FX (X )) Ỹ = − log(1− FY (Y )),

u and v are (1− p)-quantiles – FX (u) = 1− p and FY (v) = 1− p

Let Z = min{X̃ , Ỹ }

Pr(X > u,Y > v) = Pr (Z > − log p)

Extreme value theory (Ledford, Tawn, 1996; Ferro, 2007)

Pr(Z > − log p) = κp1/η. (1)

Petra Friederichs Prediction and verification of extremes 15 / 31
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Contingency table for extreme value model

Ferro (2007)

event observed non-event observed

event Pr(X > u,Y > v) Pr(X ≤ u,Y > v) p

forecasted = κp1/η = p − κp1/η

non-event Pr(X > u,Y ≤ v) Pr(X ≤ u,Y ≤ v) 1− p

forecasted = p − κp1/η = 1− 2p + κp1/η

p 1− p

Petra Friederichs Prediction and verification of extremes 16 / 31
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Contingency table for extreme value model

Maximum likelihood estimators

η̂ = min{1, 1

m

∑
t:zt>w0

(zt − w0)},

m is number of zt > w0

κ̂ =
m

n
exp

(
w0

η̂

)
.

w0 < p, but large enough for

extreme value model to be valid

From Ferro and Stephenson (2011)
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Extremal dependence indices

Ferro and Stephenson (2011) propose EDI and SEDI

EDI =
log F − logH

log F + logH

SEDI =
log F − log(1− F )− logH + log(1− H)

log F + logH + log(1− F ) + log(1− H)

both of which are equitable, independent of baseline p, do have

non-degenerate limits
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2. Conclusions

I Contingency table for extreme value model

I EDI and SEDI – scores for extreme events
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Probabilistic prediction

I Rarity of events –

probabilistic prediction

I Provides more information

for decision makers

I Predictive distribution

F ∈ F

I Observation Y ∈ ΩY
From Ferro and Stephenson (2011)
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Proper scoring rules

According to Gneiting and Raftery (2007):

A Score function is proper if

EF [S(F ,Y )] =

∫
ΩY

S(F , y)dF (y) ≤ EF [S(G ,Y )], F ,G ∈ F

and strictly proper

EF [S(F ,Y )] = EF [S(G ,Y )] only if F = G
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Continuous ranked probability score

CRPS(F , y) =

∫ ∞
−∞

(F (t)− Iy≤y )2 dt

=

∫
SBS(y ,FY , u)du Brier score

= 2

∫ 1

0

(Iy≤F−1(τ) − τ)(F−1(τ)− y)dτ

= 2

∫ 1

0

SQS(y ,FY , τ)dτ Quantile score

Logarithmic score

LogS(F , y) = − log f (y), f (y) = F ′(y),
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Proper scoring rules – focus on extremes

WRONG!: Conditioning verification on a subset of observations

Lerch et al. (2015)

CORRECT!: Stratify with respect to forecasts

Gneiting and Ranjan (2011); Diks et al. (2011)
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Weighted CRPS

Gneiting, Ranjan (2011)

Threshold-weighted CRPS

CRPSu(F , y) =

∫ ∞
−∞

(F (t)− Iy≤y )2 u(t)dt

Quantile-weighted CRPS

CRPSq(F , y) = 2

∫ 1

0
(Iy≤F−1(τ) − τ)(F−1(τ)− y)q(τ)dτ

Petra Friederichs Prediction and verification of extremes 24 / 31



Introduction
Extreme value theory

Deterministic prediction/verification
Probabilistic prediction/verification

Proper scoring rules
Proper scoring rules for extremes
Downscaling of Precipitation – Dresden

Conditional and censored likelihood score

Diks et al. (2011)

Conditional likelihood score

CL(F , y) = −Iy∈A log

(
f (y)∫

A f (s)ds

)

Censored likelihood score

CSL(F , y) = −
(
Iy∈A log f (y) + Iy∈AC log

(∫
AC

f (s)ds

))
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Non-stationary Poisson point process

Friederichs (2010)

Intensity

Λ(A) = (t2 − t1)

(
1 + ξ

(
y − µ
σ

))−1/ξ

.

Parameters (linearly) depend on covariate X

X information from (large-scale) model

µ→ µTX σ → exp(ςTX) (ξ → ξTX)

Similar to ensemble model output statistics (EMOS)
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Elbe Flood
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Uncertainty of quantile estimates

Friederichs (2010)
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3. Conclusions

I Proper scoring rules remain proper

I when weighting with respect to predictive distribution as

proposed in Gneiting and Ranjan (2011)

I for conditional or censored predictive densities as proposed in

Diks et al (2011)

I Postprocessing using EVT provides skilful and reliable

predictive distributions for extremes

I Reduces uncertainty in predictive distribution
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