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ABSTRACT 
This paper reviews recent progress in the representation of observation and background errors for satellite data 
in 4DVAR. Current specifications of observation errors in assimilation systems are often rather simplistic, but 
more sophisticated approaches are emerging that better address the situation-dependent or correlated nature of 
contributions such as representativeness or forward model error. Significant gains in forecast skill have been 
obtained from more appropriate observation error specification. Various diagnostics are available that can guide 
this speciation, together with a better understanding of individual components of the error. Background errors, in 
contrast, have reached a high degree of sophistication, with ensemble methods being used increasingly to better 
account for flow-dependent aspects of the background error. These developments are leading to substantial 
improvements in forecast skill, and they have been shown to optimise the use of the available observations. 

1 Introduction 
Observation errors and background errors are essential components that have to be specified in any 
data assimilation system. Together, they determine the weight that an observation receives in an 
analysis. Specification of these errors is a core activity for any assimilation system. Particularly the 
representation of background error has progressed substantially in recent years. 
 
This paper provides an overview and examples of current developments in the specification of 
observation and background errors, highlighting areas of particular relevance. It is beyond the scope of 
this paper to cover all aspects, and for more details, the reader is referred to the provided references. 

2 Observation errors 
2.1  Overview 
Observation errors should describe the random component of any errors in the observations and the 
comparison between the observations and the model fields. Biases are assumed to be addressed 
separately in a bias correction step (e.g., Dee, 2004). In the standard notation used for data 
assimilation, the observation error covariance matrix is referred to as R, and sometimes conveniently 
described through the standard deviation of the error (σO) and an error correlation matrix. 
 
There are a number of contributions that should be considered as part of the observation error 
covariance, and it is useful to categorise them broadly in the following way: 

• Measurement error: for instance, the instrument noise for satellite radiances. If we are lucky, 
thiserror is globally constant and uncorrelated between different observations. 

• Forward model (observation operator) error: for instance, radiative transfer error for 
satelliteradiances, arising through uncertainties in the spectroscopy, the assumed gas 
concentrations, spectral response functions, etc. This error is likely to be situation-dependent and 
correlated between different observations.  
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• Representativeness errors: these are errors arising through the mismatch of different scales 
being represented in the observations and the model fields, or, more generally, through the 
inability of the forecast model to represent atmospheric features present in the observations. 
These errors are highly situation-dependent and likely to be correlated between different 
observations. 

• Quality control error: errors can arise when the observations are used that should have been 
eliminated by quality control, for instance, cloud-affected radiances assimilated under the 
assumption of clear-skies. Such errors are highly situation-dependent and likely to be correlated 
between different observations. 

 
In most of today’s assimilation systems, the assumed observation error specification for satellite data 
is relatively basic. For example, in the ECMWF system, radiances from all main sounding instruments 
(e.g., AMSU-A, AIRS, IASI) are assimilated assuming a globally constant, uncorrelated observation 
error. As highlighted above, this is a relatively crude assumption, as all observation error contributions 
other than measurement error are likely to be situation-dependent and will show some correlations 
either between channels or spatially. Some situation-dependence is taken into account, for instance, 
for the assimilation of data from microwave imagers in the all-sky system (larger errors are assigned 
in cloudy regions to address representativeness errors, see Geer and Bauer, 2011), or the assimilation 
of Atmospheric Motion Vectors (AMVs) (larger errors are assigned in regions of stronger shear, to 
address that height assignment error has a larger effect, see Forsythe and Saunders, 2008). Capturing 
such situation-dependence is an area of active research, highly specific to the observation in question. 

2.2  Estimation of observation errors 
An enhanced specification of observation errors requires a good estimate of this error. In the 
following, we will give an overview of some methods of how such an estimate can be obtained. 

2.2.1 Error inventory 

Ideally, an estimate for the observation error should be based on a physical understanding of all error 
contributions, also referred to as an “error inventory”. For instance, for the assimilation of clear 
satellite radiances this would mean obtaining separate estimates of the instrument noise, the radiative 
transfer error, the error of representativeness, the cloud screening error, etc. An example of work in 
this direction can be found in Ventress and Dudhia (2013). A complete analysis of all contributions 
and their correlation structures is often challenging, especially for contributions such as the radiative 
transfer error or the representativeness error, and as a result this area has received only relatively little 
attention so far. 

2.2.2 Departure-based diagnostics 

Alternative methods have been developed that infer information on observation errors indirectly, 
either through evaluating collocated observations (e.g., Bormann et al., 2003), or by considering 
statistics based on an analysis of departures from assimilation systems. The latter have gained some 
popularity in recent years, mostly because such departure statistics are easily available from any 
assimilation system. We will therefore summarise these in more detail. 
 
An illustrative qualitative and very basic measure of observation errors is the standard deviation of the 
background departures, i.e. the differences between observations and their background equivalent. 
Assuming that the background errors and observation errors are uncorrelated, the standard deviation of 
background departures gives an upper bound for the true observation error (σo). Figure 1 shows how 
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standard deviations of background departures compare to the assumed observation errors for the 
ECMWF system for a selection of observing systems. We would expect the ratio shown to be greater 
than one, reflecting the contribution of background errors in addition to observation errors, whereas a 
value less than one suggests that the assumed observation error is too large. As can be seen, the 
assumed observation error is too large for many satellite observations, especially for some channels of 
the IASI instruments. The exception is GPS radio occultation data, which do not suggest such a clear 
over-estimation. The situation is quite different to, for instance, the assumed observation errors for 
radiosonde data. Related, more sophisticated diagnostics for assumed observation errors have been 
derived based on the cost function contribution of the analysis, see for instance Talagrand (1999) or 
Desroziers and Ivanov (2001) for further details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Standard deviation of background departures, normalised by the assumed observation error for the 
ECMWF operational system (August 2014) for 5 different observing systems: AMSU-A, IASI, Atmospheric 
Motion Vectors (AMVs), GPS radio occultation, and radiosondes. 
 
Background departure covariances include a contribution from the background error, and over the 
years several methods have been developed aimed at partitioning this into observation and background 
error contributions. Two such methods shall be highlighted here: 

• Hollingsworth/Lönnberg: This method assumes that background errors are spatially correlated, 
whereas observation errors are not. An estimate of observation error is therefore obtained from 
the spatially uncorrelated part of the background departure covariance calculated from a large 
database of pairs of observations, as described further in Hollingsworth and Lönnberg (1986). 

• Desroziers: This method estimates an observation error covariance based on the relationship: 
 

where da and db are the analysis and background departures, respectively. The relationship has 
been derived with the assumption that the weights used in the assimilation system are consistent 
with the true weights, as discussed in Desroziers et al. (2005). Iterative application of the 
diagnostic has been suggested (e.g., Desroziers et al., 2009). 

 
These diagnostics have been applied by numerous authors in recent years (e.g., Garand et al., 2007; 
Bormann and Bauer, 2010; Bormann et al., 2010; Stewart et al., 2014; Weston et al., 2014). Note that 
the diagnostics rely on a number of assumptions, and for a discussion of their relevance see, for 
instance, Bormann and Bauer (2010). In the following, we apply these diagnostics to the ECMWF 
system, and highlight how they can be used to provide guidance for the specification of observation 
errors. 
2.2.3 Example: AMSU-A 
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The first example is that of the microwave temperature sounder AMSU-A, one of the most influential 
instruments currently assimilated. The above departure diagnostics were used to estimate observation 
errors (σO) as well as inter-channel and spatial error correlations (see Bormann and Bauer, 2010). The 

study found relatively good agreement between the estimates from several diagnostics, with σO values 
that were much lower than the observation errors assigned in the operational assimilation system at the 
time (Figure 2). At the same time, the diagnostics suggested little inter-channel error correlations, and 
the estimates for spatial error correlations were also small at the thinning scales used for this data. It 
appears that uncorrelated instrument noise completely dominates the true random observation error. 
The diagnostic provided little justification for the use of a very inflated observation error. 
 
Assimilation trials were performed in which the assumed observation errors for AMSU-A were 
lowered from the previously assumed 0.35 K for tropospheric channels to 0.2 K (0.28 K for channel 
5). This resulted in a very substantial improvement in forecast skill, as shown in Figure 3. It is 
apparent that AMSU-A data were previously under-weighted in the ECMWF system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: (left) Estimates of σo for AMSU-A on NOAA-18 from the Hollingsworth/Lönnberg 
(purple) and Desroziers (red) diagnostics, together with estimates of the instrument noise (black), 
the standard deviation of background departures (dashed grey), and the observation error 
assumed in 2008 (grey). (right) Estimates of observation error correlations obtained with the 
Desroziers diagnostic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Forecast impact of reducing the AMSU-A observation errors in terms of the normalised 
difference in the root mean square error for the 500 hPa geopotential for the Northern 
Hemisphere (left) and Southern Hemisphere extra-tropics (right). Vertical bars indicate 95% 
significance intervals. The results are based on 120 forecasts obtained during December 2009–
January 2010 and May–July 2010. 

 
2.2.4 Example: IASI 
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The same diagnostics have been applied to IASI data, a hyperspectral infrared instrument and also a 
leading contributor to forecast skill. The estimates for observation error and inter-channel error 
correlations are shown in Figures 4 and 5. As for AMSU-A, the assumed observation errors are 
significantly larger than suggested by the diagnostics for many channels (consistent with Figure 1), 
but here we are finding significant inter-channel error correlations, especially for lower 
tropospheric/window channels (channels 312–921), ozone channels (1479–1658), and humidity 
channels (1671–5480). Similar results have been obtained by a number of authors using a variety 
ofdata assimilation systems (e.g., Garand et al., 2007; Bormann et al., 2010; Stewart et al., 2014). 
These diagnostics suggest that errors other than instrument noise (e.g., representativeness or cloud 
screening errors) are contributing considerably to the true observation error for hyperspectral infrared 
sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: As Figure 2, but for METOP-A IASI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: As Figure 3, but for METOP-A IASI and the Hollingsworth/Lönnberg diagnostic. 
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The question arises to what extent the error correlations affect what observation errors can be assigned 
to IASI data. One approach is to take the inter-channel error correlations into account during the 
assimilation, as efficient methods are available to do this. On the other hand, past experience has 
suggested that inflating the assigned observation errors, while still assuming uncorrelated observation 
errors, can be a useful way to circumvent the need to account for error correlations. 
 
To investigate the inter-play between inflating observation errors and taking inter-channel error 
correlations into account, we performed two series of experiments: The first series uses a diagonal R 
matrix for AIRS and IASI, with σo specified from the observation error diagnostics, but multiplied 
with different scaling factors ranging from 1 to 4. The second series uses an R matrix for AIRS and 
IASI that includes the diagnosed inter-channel error correlations, with σo specified from the 
observation error diagnostics, but again multiplied with different scaling factors ranging from 1 to 3. 
 

Diagonal observation errors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Observation errors with error correlations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Standard deviations of background departures over the Southern Hemisphere for several observation 
types as a function of the scaling factor applied to the diagnosed observation errors for AIRS and IASI. The 
standard deviations are normalised to 1 for an experiment in which both AIRS and IASI are not assimilated. 
Data are for 15 December 2011 – 14 January 2012. Top row: diagonal observation errors are assumed; bottom 
row: error correlations are taken into account. For radiosondes (TEMP-T for temperature, TEMP-q for 
humidity) and GPS radio occultation bending angles (COSMIC-R, rising; COSMIC-S, setting), departure 
statistics have been combined in the approximate layers indicated above the three panels. 
 
Figure 6 shows the evolution of the normalised standard deviation of background departures for 
several observing systems as a function of the scaling factor. These departure statistics are a useful and 
robust tool for evaluating the quality of the background, with values of less than one (i.e. standard 
deviations smaller than for a denial experiment) indicating an improvement and values larger than one 
indicating a degradation from assimilating AIRS and IASI. 
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The experiments with the diagonal observation error covariance show that there is a clear degradation 
from using AIRS and IASI when the unscaled diagnosed values are used. However, an improvement 
can be achieved when inflating the assumed observation error, with a minimum at a relatively large 
scaling factor of 2.5–3. This is consistent with the operational use of large observation errors for many 
channels. 
 
For the series of experiments with full observation error covariance matrices, using the unscaled 
diagnosed matrix gives more reasonable results, but some scaling of the observation errors appears 
beneficial as well. The minimum standard deviations are achieved with a much smaller scaling factor 
of around 1.5–1.75. Comparing the experiments with optimised scaling factors, the fit for humidity-
sensitive observations tends to be significantly better in the experiment with the full error covariance 
matrix, whereas for temperature-sensitive observations the difference is less clear. This may be related 
to the presence of particularly significant error correlations for the water vapour channels in the 
diagnosed error covariance matrices, so accounting for these shows clearer benefits. 
 
For AIRS and IASI, where significant inter-channel error correlations have been diagnosed, it 
therefore appears to be beneficial to account for these, and it allows the use of an observation error 
(σo) more consistent with departure statistics. The use of inter-channel error correlations for IASI is 
used operationally at the Met Office since January 2013, leading to significant gains in forecast skill 
(Weston et al., 2014). Some reconditioning of the diagnosed matrix was found to be necessary, 
achieved by adding a significant uncorrelated component to the original matrix. This is thought to 
address the otherwise considerably larger condition number of the employed R matrix. Adjustments 
have been found necessary in some cases in the ECMWF system as well, but here they were traced 
back to the diagnosed matrices suggesting unrealistically small errors in the structures associated with 
the smallest eigenvalues of R. The experience hence suggests that some adjustments may be necessary 
when using the diagnosed matrices. Ideally, the diagnosed matrices should be backed up by guidance 
from an error inventory, to ensure physically meaningful robustness of the assumed matrices. 

2.2.5 Adjoint-based diagnostics 
With the advent of adjoint-based diagnostics, tools have been developed that estimate the sensitivity 
of the forecast error to the specification of the assumed observation error using adjoint methods (e.g., 
Daescu and Todling, 2010). These provide guidance where an inflation/deflation of the observation 
error or background error is likely to be beneficial. Extensions have also been developed that provide 
the sensitivity to specifying a correlation structure for the observation error, see Daescu and Langland 
(2013) for further details. It should be noted that these tools largely treat the assigned observation 
error as a tuning factor, and they currently rely on prior assumptions on the correlation structure of the 
errors. Care as to be taken that the suggested adjustments to the observation errors remain physically 
meaningful, either by consulting an error inventory or departure-based diagnostics. 

3  Background errors 
3.1 Overview and hybrid EDA 4DVAR 
 
The background error describes the random component of the error in the background forecast used in 
the assimilation system and plays an important role in defining the structure of the analysis 
increments. A good specification of the background error is also crucial in successfully carrying 
forward in time the information analysed from past observations. As a result, enhancing the 
background error specification has received a large amount of attention since the development of 
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modern assimilation systems. In fact, many of today’s developments in data assimilation methodology 
are motivated by a better representation of background errors, and a more complete overview of those 
can be found in Lorenc et al. (2014). 
 
A common theme of the improvements in the background errors in the ECMWF system and elsewhere 
is the better representation of flow-dependent aspects of the background error. This is achieved 
through an increasing use of ensemble-based methods. In the current operational configuration at 
ECMWF, the standard 12h 4DVAR is enhanced by providing a flow-dependent background errorfrom 
an Ensemble of Data Assimilations (EDA) (Isaksen et al., 2010). The EDA currently consists of 25 
separate lower-resolution 4DVARs, that aim to represent the uncertainties involved in the assimilation 
system by using perturbed observations and perturbed versions of other input fields such as the sea 
surface temperatures, and also by employing stochastic physics to represent model error. The size of 
the perturbations applied to the observations is determined by the assumed observation errors, another 
note-worthy use of the assigned observation errors in the ECMWF system. The spread of the EDA can 
be related to the size and structure of the analysis and background errors, as outlined in Isaksen et al. 
(2010). The system developed at ECMWF is referred to as Hybrid EDA 4DVAR, and in the present 
configuration the EDA supplies a high-resolution 4DVAR with flow-dependent background error 
variances as well as flow-dependent structure functions (via a wavelet formulation, Fisher, 2003), 
derived over the last few days as described in more detail in Bonavita et al. (2014). 
 
The use of a flow-dependent background error has led to a very substantial increase in forecast skill 
compared to the previously used static background error formulation (Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Forecast impact as in Figure 3 over the period June/July 2012. Here, positive values 
indicate a reduction in forecast errors, i.e. a positive forecast impact. 

3.2  Case study: Hurricane Sandy 
The role of adaptive and flow-dependent background errors on the use of satellite data has been 
highlighted based on the example of Hurricane Sandy that hit the east coast of the US on 30 October 
2012 and caused wide-spread damage (McNally et al., 2013). The operational ECMWF forecast gave 
excellent guidance on the timing and positioning of Sandy’s landfall about a week in advance, 
predicting accurately the unusual “left turn” of Sandy over the Atlantic. Three assimilation 
experiments highlight the role of satellite data and the background error specification: The Control 
experiment was the operational configuration. In a Denial experiment, all polar satellite data were 
withheld from the high-resolution 4DVAR (i.e. around 90% of the assimilated observations), but the 
EDA used for the background error specification continued to use all observations. In a Denial+EDA 
experiment, all polar satellite data were withheld from the 4DVAR as well as the EDA, hence 
allowing the background errors to adjust to the new observation coverage. 
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Figure 8 shows the track forecasts from these three experiments from two consecutive days, which can 
be compared to the observed track shown in Figure 9. The Denial experiment leads to a severely 
degraded forecast of the landfall position as a result of denying the polar satellite data. However, using 
background errors appropriate for the degraded observational coverage in the Denial+EDA 
experiment allows to recover some of the lost skill. While the forecasts are still clearly worse and less 
consistent without the polar satellite data compared to the Control, the more appropriate background 
error allowed a better use of the remaining observations. For instance, further investigations 
suggestethat the updated background errors affected quality control decisions for AMVs over the 
Pacific, and this contributed to better forecasts of Sandy’s path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Forecast of Sandy's track (in 12 h intervals), starting from 25 October 2012 00UTC 
(left) and 26 October 2012 00UTC (right), respectively. Black dots are for the Control experiment, 
red dots for the Denial, and blue dots for the Denial+EDA experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Sandy's observed track as given by the National Hurricane Centre, covering the 
period 20–31 October 2012. 
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3.3  Radiance diagnostics 
With an increasing use of ensemble methods to specify flow-dependent background errors, there is an 
increasing need to critically assess and fine-tune the performance of the ensembles used. This can be 
done in a number of ways, but of particular interest in the context of this seminar is the use of satellite 
observations to do this, as in Flowerdew and Bowler (2011) or Bormann and Bonavita (2013). 
 
Bormann and Bonavita (2013) performed an evaluation of the ECMWF EDA spread in radiance space 
for AMSU-A and MHS observations. To do so, the spread of the EDA in radiance space has been 
calculated by mapping each ensemble member to radiance space, and the resulting spread has been 
compared to background departure statistics from a high-resolution 4DVAR experiment. This leads to 
spread-skill diagrams as shown in Figure 10. These suggest that the EDA is underdispersive, for 
instance over the extra-tropics for AMSU-A channel 8. This is a common finding, also when 
evaluating the EDA spread using analyses. It is likely to be a result of suboptimalities in the applied 
perturbations, together with the lower spatial resolution used in the EDA. A calibration step is 
therefore applied before using the spread statistics for the specification of background errors, in 
addition to a spatial filtering step that addresses sampling errors as further described in Bonavita et al. 
(2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Variance of background departures for AMSU-A channels 8 (left) and 12 (right), 
binned by the ensemble variance in radiances space from the EDA, for the three latitude bands 
indicated in the legend. Histograms in lighter colours give the population for each variance bin 
(right y-axis). Also shown is a dashed line with the slope of one, indicating the slope of the 
departure/spread relationship for a perfectly calibrated ensemble. Statistics are derived for 
February 2012. 

 
An estimate of flow-dependent background errors in radiance space, after calibration and spatial 
filtering, is provided in Figure 11. For AMSU-A channel 8, the estimate suggests that the random 
background error is well below 0.1 K for large parts of the globe, a result consistent with results from 
background departure statistics. Compare this to a typical noise figure of 0.2 K for currently available 
instruments. This highlights two aspects: firstly, a good description of the background error together 
with a careful use of observations is needed to preserve and improve the information already contained 
in the background. Secondly, lower instrument noise is likely to be needed for future instruments to 
achieve further gains in forecast accuracy.  
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Figure 11: Estimates of background errors, as given by calibrated and filtered EDA spread values, for AMSU-
A channel 8 (left) and channel 12 (right) for 15 February 2012 9Z. 

4  Conclusions 
This paper summarises the progress made in recent years in the area of observation error and 
background error representation in today’s assimilation systems. For observation errors, current 
specifications are often fairly crude for satellite data, and inflated observation errors are frequently 
assumed, to compensate for observation error correlations (perceived or actual). However, more 
sophisticated representations of observation errors are emerging, taking into account the situation 
dependent or correlated nature of the representativeness or forward model error. Situation dependence 
has been particularly successful in the context of the assimilation of radiances in all-sky conditions 
and for AMVs. When error correlations are relatively large, current results suggest that taking these 
correlations into account and at the same time assuming observation errors closer to the true errors 
gives better results than assuming uncorrelated and inflated errors. The latter finding is likely to be 
particularly relevant for optimising the assimilation of new low-noise instruments such as CrIS, for 
which correlated contributions from errors other than instrument noise are more significant. 
 
The representation of background errors has reached a high degree of sophistication, and ensemble 
methods are increasingly used to better capture the flow-dependent nature of background errors. 
Virtually all NWP centres are currently employing some form of ensemble data assimilation to better 
represent flow-dependent aspects. 
 
Continuous monitoring of the evolution of the background and observation error representation is an 
important activity, aimed at optimising how new information from observations can complement the 
relatively high accuracy of the background. The paper has highlighted that the typical size of 
background errors for key variables such as temperature-sounding radiances is now rather small 
compared to the instrument noise of current data, posing new challenges to the design of future 
instruments, but also demanding novel ways to optimise the information content extracted from 
satellite observations. 
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