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ABSTRACT 
In this paper we present a discussion of the assimilation techniques based on the use of Principal Component 
Analysis. Using these techniques we have adapted the ECMWF operational ECMWF 4D-Var system to allow 
the direct assimilation of principal component (PC) scores derived from high spectral resolution infrared 
sounders. The primary aim of this development is towards an efficient use of the entire measured spectrum that 
could not be achieved by traditional radiance assimilation. Results suggest that the PC assimilation system (in 
clear sky only) performs as well as – and in some respects marginally better than – the current ECMWF 
operational IASI radiance assimilation that also uses radiances peaking above clouds and overcast scenes. This 
demonstratesthe viability of an alternative route to radiance assimilation for the exploitation of data from high 
spectral resolution infrared sounders in NWP. We also discuss the handling of clouds in PC space. 

1. Introduction 
The assimilation oh high resolution radiances measured by the Infrared Atmospheric Sounding 
Interferometer (IASI) has produced a significant positive impact on forecast quality (Collard and 
McNally, 2009). The operational use of IASI radiances at ECMWF is currently restricted to a 
selection of temperature sounding channels in the long-wave and short-wave region of the spectrum 
and to a small number of ozone and humidity sounding channels. In principle, to exploit the full 
information content of IASI, the number of channels used in the assimilation could be increased to 
cover the full spectrum. Currently, NWP users are limited to assimilating less than the full IASI 
spectrum by the prohibitive computational cost, but it is also known that the independent information 
on the atmosphere contained in an IASI spectrum is significantly less than the total number of 
channels (Huang et al., 1992). There is thus a need to find a more efficient way of communicating the 
measured information to the analysis system than simply increasing the number of channels. 
Similarly, satellite agencies are seeking a more efficient means of near-real time data dissemination 
for instruments such as IASI because the traditional practice of transmitting full spectral data at full 
spatial resolution is likely to become prohibitively expensive in the future (as instruments are flown 
on multiple polar and geostationary platforms). Principal Component Analysis (PCA) is a classical 
statistical method for the efficient encapsulation of information from voluminous data (Joliffe, 2002). 
As such, it has been proposed as a solution to the above problems although, while noting that the two 
issues are quite similar, the requirements are quite separate. There are strong indications that data 
providers will evolve to the dissemination of Principal Component (PC) scores to improve efficiency. 
It is thus timely and opportune to investigate the feasibility of directly assimilating PC scores into 
NWP models. It should be noted that the use of radiances reconstructed from PC scores (Collard et 
al., 2010) provides an alternative methodology for the efficient assimilation of high-resolution 
infrared sounder spectra. In this article we document the development and the functionality of a global 
four-dimensional variation (4D-var) assimilation system based on the direct use of PC data. The 
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primary aim of this development is towards an efficient use of the entire measured IASI spectrum that 
could not be achieved by traditional radiance assimilation.  

2. A brief review of the theory of Principal Component Analysis 
2.1 Principal component scores 
PCA is a method that allows the reduction of the dimensionality of a data set by exploiting the 
interrelations between all the variables contained in the data set. The reduction of the dimension of the 
dataset is obtained by replacing the original set of correlated variables with a smaller number of 
uncorrelated variables called principal components. Because the new derived variables retain most of 
the information contained in the original data set, PCA theory provides a tunable mechanism to 
efficiently represent the information in the dataset. 
 
Our dataset consists of a sample of l spectra of n radiances arranged into an l by n data matrix R. The 
dataset can then be represented by the vector population T

nrrr ),.....,( 21=r (here T denotes the 

transpose). If C is the n by n covariance matrix of the data matrix R, and A is the n by n matrix formed 
by the eigenvectors of the covariance matrix arranged as row vectors in descending order according to 
the magnitude of their eigenvalues, the PCs, p, of the vector population can be written as:  

rAp =            (1) 

The eigenvectors represent the directions of maximum variance in the data; consequently, each PC 
gives the linear combination of the variables that provides the maximum variation. The PCs are 
orthogonal, hence uncorrelated (although this does not imply that they are statistically independent), 

and the values associated to each spectrum are known as PC scores. If iλ  is the eigenvalue associated 

with the ith eigenvector, then the value of ∑
=

n

i
ii

1

2/ λλ  gives the proportion of variation explained by the 

ith PC. Because the matrix A is orthogonal, its inverse is equal to its transpose and we can write: 
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Equations (1) and (2) can be written in discrete notation form as:  
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where i=1,n represents the ith value and j=1,l is the jth spectrum. A number of PCs, m, fewer than n can 
often represent most of the variation in the data. We can then reduce the dimension of the problem by 
replacing the n original variables with the first m PCs. In many applications, the choice of the number 
of dimensions is based on the total variation accounted for by the leading PCs and it will in general 
depend on specific characteristic of the data.  
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For any new observed radiance spectrum, obsr , we can compute the equivalent PC scores by 
projecting the radiances upon the full set of eigenvectors derived from the covariance matrix of the 
training dataset. As discussed above, less than n eigenvectors are typically required to reproduce most 
of the information in the observed spectra. Therefore, we can compute a vector of m truncated 

observed PC scores, obsp : 
 

∑
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where i=1,m. The truncated PC scores may be regarded as an efficient encapsulation of the original 
observation that may be used for storage, transmission or indeed assimilation. 
 
In addition to reducing the dimension of the observed information, the value of m can also be tuned to 
achieve filtering of the observations, using PCA to separate variations of the atmospheric signal from 
variations of the random instrument noise. It is argued that the atmospheric signal is more highly 
correlated across the spectrum and as such is represented by the high rank eigenvectors (i.e. those 
with larger eigenvalues). Conversely, the random instrument noise is spectrally uncorrelated and is 
thus represented by low rank eigenvectors. In principle we may attempt to exploit this separation (in 
ranked eigenvector space) to retain only eigenvectors related to atmospheric signal and discard those 
eigenvectors describing instrument noise. Of course great care must be taken if truncating the PC 
scores for this specific purpose. Small scale and small amplitude atmospheric features can be 
important sources of rapid forecast error growth in NWP. However, such features may not be strongly 
correlated across the measured spectrum and could potentially be confused with noise (and removed if 
the truncation is too severe). Optimal noise filtering can be achieved by noise normalising the spectra 
because this will ensure that the noise is distributed evenly among all eigenvectors. For interferometer 
instruments whose radiances have been apodised, it is important that spectra are normalised using the 
full instrument error covariance matrix because if we use a diagonal error covariance matrix we could 
lose signals with spectral signatures on the scale of the instrument resolution. 

 
When compared to spectral radiances, the physical interpretation of PC score observations is less 
intuitive. This is illustrated in Figure 1 which shows the temperature Jacobians for the US Standard 
Atmosphere for the first ten PC scores of a portion of the IASI spectrum that comprises 165 long-
wave channels whose primary sensitivity is to temperature and the surface although they also convey 
some humidity information. Radiance temperature Jacobians are broad, but relatively localized in a 
given part of the atmosphere (e.g. surface or stratosphere) whereas the PC score Jacobians are not 
localized and can have multiple maxima throughout the entire atmosphere (e.g. at the surface and in 
the stratosphere).  
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Figure 1. The temperature Jacobian for the first 10 PCs for the US Standard Atmosphere. 

 
 
 
Near-surface layers give a contribution to the signal that is significantly larger for the first three PCs. 
While a sensitivity to the stratosphere is apparent to a variable extent in a number of PCs, PC1 has the 
largest contribution from that region. It should be noted that the highest ranking PCs also have a 
significant sensitivity to changes in the surface skin temperature. This is particularly true for PC1 
whose behaviour is closely related to that of a window channel radiance and has the strongest 
response to the presence of cloud. However, in this case if the warm surface is obscured by a cold 
cloud, we expect a warming of the observed PC1 score (opposite to the response of an infrared 
window channel that would cool). Cloud signals appear as an asymmetry (i.e. a warm tail) in the 
histogram of the observed minus computed PC1 score departures. Although not shown here, the ten 
PCs in Figure 1 are also sensitive to humidity. It should be stressed that the behaviour and the nature 
of the PCs is affected by the choice of the channel set used for the PC generation. By choosing a 
different channel set for the PC generation, Jacobians may become more or less localized, signals 
from different spectral regions may become more or less separable and an intuitive effect like that of 
PC1 behaving like a radiance window channel may be lost. Finally, it should be noted that the non-
locality of the PC score Jacobians makes impossible to find a PC score observation insensitive to the 
presence of clouds. 

2.2 Reconstructed radiances 

If required, the PC scores may be used to reconstruct a new vector of reconstructed radiances: 

∑
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The reconstructed radiances are noise filtered and they generally have channel-correlated errors even 
in the case when the original radiance errors are not correlated. Even though a radiance vector 
containing all n channels may be reconstructed from the m truncated PC scores, it should be stressed 
that the n reconstructed radiances only contain m independent pieces of information and crucially  
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rec
ir  ≠ obs

ir  (i.e. PCA is not a lossless technique when truncating). In fact, any subset of nr 

reconstructed radiances will contain the same information present in the m PC scores as long as nr ≥ 
m. If we select a subset of nr = m reconstructed radiances we can then achieve the same reduction in 
data volume achieved with the direct use of mPC scores. However, if nr≥ m the covariance matrix of 
the reconstructed radiances is in general not invertible (Masiello et al., 2009). Consequently, the use 
of a full error covariance matrix in the assimilation of reconstructed radiances can potentially cause 
numerical problems. It should be stressed that although it should be theoretically possible to find a 
subset of m reconstructed radiances whose covariance matrix can be inverted, this might not be 
achievable in practice for any choice of n. Of course, to avoid ill conditioning one can assimilate a 
subset of nr <m reconstructed radiances. A subset of reconstructed radiances should then be selected 
such that the number of radiances, nr, is as close as possible to the number of PC scores, m, to reduce 
to a minimum the consequent loss of information.  

 
Arguably, the use of reconstructed radiances is simpler to implement than the direct use of PC scores 
because NWP centres already know to deal with raw radiances. The use of reconstructed radiances 
would not require any of the significant technical and scientific investment needed to develop a 
system to directly assimilate PC scores. The techniques developed for handling clouds in assimilation 
systems based on raw radiances should be in principle applicable to reconstructed radiances. Although 
at a theoretical level the assimilation of PC scores or reconstructed radiances can be considered 
equivalent (if we do everything correctly), the successful introduction of either of these approaches in 
an operational NWP environment will eventually depend on how well the various elements of the 
assimilation system can be practically implemented and tuned. For instance, the observation operator 
used for the simulation of the reconstructed radiances should reproduce the true (i.e. multichannel) 
nature of each reconstructed radiance channel. This could be done using a conventional forward 
model but it would be prohibitively expensive. The question then arises whether we should 
approximate the simulated reconstructed radiances with simple calculations of the corresponding real 
channels or perhaps use a PC based forward model. 
 
To date, the assimilation of reconstructed radiances has been studied at ECMWF by Collard et al. 
(2010) and at the Met Office by Hilton and Collard (2009) using AIRS and IASI data respectively. In 
these studies, reconstructed radiances were used as proxy of raw radiances. A diagonal error 
covariance matrix was used although an inflated observation noise was utilized to reduce the 
influence of errors arising from unmodelled inter-channel correlations. No attempt was made to 
reduce the dimension of the data using a subset of reconstructed radiances. The difference in forecast 
impacts between experiments using raw radiances and reconstructed radiances was found to be 
statistically neutral. 

3. PC assimilation methodology 
3.1 Overall architecture of the assimilation system 
For the direct 4D-Var assimilation of PC scores derived from IASI fully clear spectra we use the 
methodology shown schematically in Figure 2. The observed IASI spectra are first screened for the 
presence of clouds and contaminated spectra are discarded. This must be done before assimilation as 
the PC training has been performed with only completely clear data and none of the eigenvectors 
correspond to cloud signals. The clear spectra are then projected on to the fixed basis of synthetic 
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eigenvectors used for the training of the PC based observation operator PC_RTTOV (Matricardi 
2010) to produce a vector of observed PC scores PC

OBSY . Each vector of observed PC scores has length 

n, but crucially only the first m of these are assimilated (where m<n in ranked order).In truncating the 
vector of observed PC scores the assimilation is made highly efficient, while preferentially retaining 
highest rank PC scores (1,2,3 ..m) that convey most information about the atmospheric state.  
 
The m observed PC scores are then provided as input to the 4D-Var. Trajectory estimates of the 
atmospheric state (X) are used as input to the observation operator PC_RTTOV to compute model 
equivalents of the m PC scores, )(XY PC

B .Ignoring the time integration of the forecast model to the 
observations, the cost function to be minimized is essentially: 
 

)]([)]([][][)( 11 XYYRXYYXXBXXXJ PC
B

PC
OBS

TPC
B

PC
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T
B −−+−−= −−

  (7) 

 
where the accuracy of the background estimate of the atmospheric state XB is described by the error 
covariance B and the accuracy of the observations and associated observation operator is described by 
the error covariance R. During the minimization, perturbations of the atmospheric state are mapped 
into the observation (PC) space by the tangent linear of the observation operator PC_RTTOV_TL. 
Likewise, gradients of the cost function with respect to the PC score observations are evaluated and 
mapped into gradients with respect to the atmospheric state by the adjoint of the observation operator 
PC_RTTOV_AD. The atmospheric state XA that minimizes the above cost function is referred to as 
the analysis and the departures of this from the background atmospheric state XB are referred to as 
analysis increments defined at the start of the 4D-Var window. It should be noted that within the same 
framework it should be possible to replace the observed PC scores PC

OBSY with the PC score data 

generated operationally by data providers as a solution to the dissemination problem. This would 
require a re-projection from the truncated real data eigenvector basis used by the data providers to the 
synthetic PC_RTTOV eigenvector basis, but otherwise no major obstacles are foreseen. 
 
 

 
 

Figure 2.The flow diagram of the direct PC score assimilation. 
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The specification of the PC score observation error covariance matrix R requires some degree of 
attention. The matrix R should describe the combined error of the observations (PC scores) and 
forward operator (PC_RTTOV). An initial estimate of the diagonal elements of R can be obtained 
computing the standard deviation of the observed minus background (O-B) departures. Of course 
these values are not optimal in that they contain a contribution from the uncertainties in the 
background state and as such can only be regarded as an upper bound upon the required error. To 
separate the contribution of the observation error and the background error in the departure statistics, 
we have used the techniques proposed by Hollingsworth and Lönnberg (1986) and Desroziers et al. 
(2005). In the Hollingsworth/Lönnberg method pairs of background departures are used to compute 
statistics as a function of the separation. To estimate the observation error, the values of the 
covariances are extrapolated to zero separation. It is then assumed that the spatially uncorrelated 
component of the background departures is largely dominated by the observation error. 

 
In the Desroziers method, the elements of the error matrix R are expressed as the expectation value  

 

][ T
baE dd=R           (8) 

 
where ad and bd are the analysis and background departures in the observation space. This 

relationship can be derived from the quasi-linear estimation theory used as the basis for variational 
assimilation schemes like 4D-Var. Assuming initial estimates of the weights are reasonable, the 
Desroziers algorithms produces a refined estimate of the observation error. A detailed description of 
the experimental set-up used to compute the tuned observation errors can be found in Bormann et al. 
(2010). It should be noted that both the Hollingsworth/Lönnberg and Desroziers method can be used 
to diagnose inter-PC score error correlations. Matricardi et al. (2014) have recently demonstrated how 
the neglect of the off-diagonal terms of the PC error covariance matrix can have a negative impact on 
the skill of the PC based assimilation and forecast system. 

3.2 Cloud detection in radiance space and PC based quality control 

The assimilation of PC scores at ECMWF is currently restricted to clear sky conditions. In the 
ECMWF operational radiance assimilation clouds are detected using the algorithm described in 
McNally and Watts (2003). However, this scheme requires as input the computation of overcast 
radiance at the interface of each atmospheric layer and this quantity is not readily available from the 
current version of PC_RTTOV. To avoid an awkward hybrid system (where RTTOV is used for cloud 
detection and PC_RTTOV used for subsequent assimilation) an alternative cloud detection has been 
developed. It uses three separate tests applied to uncorrected radiance departures and seeks to identify 
only fully clear IASI scenes (for details see Matricardi and McNally 2011).  
 
In conjunction with the new cloud detection scheme, an additional PC based quality control is used 
and acts as an extra check for residual cloud contamination. As discussed in section 2, if the principal 
components are derived from a set of channels which comprises channels sensitive to the surface, PC1 
has similar characteristics to an infrared window channel – in particular a heightened sensitivity to the 
surface emission and the presence of clouds. Large positive departures of the observed PC1 score 
from the clear sky computed value are an indication that the observation is affected by clouds.Using a 
visual inspection of AVHRR imagery overlaid with IASI pixels it was found that a threshold of 40 
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units applied to the departure in PC1 is sufficient to reject most cases of residual cloud contamination. 
Note that the known accuracy of the model skin temperature over the ocean means that large PC1 
departures cannot be due to skin temperature error. For instance, based on the values tabulated in 
Table I, an error of 1K in skin temperature could only account a PC1 departure of ~10 units. 

3.3 Bias correction for PCs 

In the ECMWF PC based assimilation system, biases in the PC observations or due to systematic 
errors in the PC based radiative transfer model and cloud screening are removed using the variational 
bias correction scheme (VarBC) described by Dee (2004). This is an adaptive correction algorithm 
used operationally at ECMWF for all satellite data including IASI radiances (and indeed some in situ 
observations such as aircraft) where the bias is expressed as a linear combination of pre-defined 
atmospheric predictors. These predictors account for air-mass variations of the bias correction, but 
also variations dependent upon the scan geometry. For consistency with radiance observations, but 
also because PC scores are likely to be influenced by rather similar sources of systematic error, we 
have applied the same multi-predictor bias correction scheme for the assimilation of the PC scores. 
After an initial training phase of typically two to three weeks it is found that the adaptively computed 
bias corrections for PC scores perform extremely well – becoming very stable in time and removing 
almost all systematic differences between the observations and the analysis. An exception to this are 
the corrections computed for a small number of PC scores that are slower to stabilize and tend to drift 
slightly over time. These particular PC scores have the strongest sensitivity to the surface and to the 
stratosphere and the slow drift of these bias corrections to a large extent mimics the behavior often 
seen in the corrections computed for window and stratospheric channel radiances. This suggests that 
same processes that cause drifts in radiance biases (time varying model error and feedback with 
quality control) could be responsible. While this slow variation of bias corrections is undesirable and 
certainly warrants further investigation, previous experience with radiances – confirmed by tests with 
PC scores – suggests that it is not a significant source of degradation in the assimilation.  

3.4 Assimilation experiments 

To quantify the performance of the PC score assimilation system we have designed a set of 4D-Var 
assimilation experiments that typically consist of a baseline experiment, a radiance assimilation 
control experiment and a PC score experiment. The baseline experiment uses all operational 
observations (satellite and conventional) with the exception of IASI data. The radiance control 
experiment and the PC score experiments are identical to the baseline but they additionally assimilate 
IASI radiances and truncated PC scores respectively. We should again stress that the use of PC data is 
currently restricted to fully clear spectra. This is in contrast to the radiance assimilation system where 
the use of IASI data extends to channels unaffected by clouds and to fully overcast scenes. 
 
The choice of PC score truncation threshold is typically based upon a set of short preliminary 
assimilation experiments. Starting from an initial number of 10, the number of PC scores assimilated 
in the PC system is varied up to the full number of available scores. We then look for a number of 
truncated PC scores beyond which there is no discernible improvement in performance (as measured 
by the fit of the analysis to other observations). Thus we retain only these truncated PC scores for the 
main PC assimilation testing. In a similar set of preliminary assimilation experiments we have also 
found that both the Desroziers and Hollingsworth/Lönnberg refinements of the diagonal observation 
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error for PC scores produces significantly better results than simply using the untuned standard 
deviation of observed minus background departures. However, the Desroziers error values tend to 
give an additional marginal improvement over the Hollingsworth/Lönnberg estimates so these have 
been adopted for the main assimilation testing. For the observation error covariance matrix R of the 
control radiance experiment we have chosen to use the same diagonal matrix used operationally at 
ECMWF (see Collard and McNally, 2009 for details). The reason for making this choice was to 
ensure we have a reliable control based on a sound operationally proven radiance assimilation system 
(rather than attempting to produce two matched systems with no heritage). The use of PCs has been 
investigated both in the short-wave and long-wave spectrum. Recently we have focused on 
maximising the spectral information of IASI in clear sky, assimilating 50 PCs generated from selected 
radiances in the IASI long-wave temperature band augmented with channels from the water vapour 
and ozone spectral bands (a total of 305 channels) using a full PC error covariance matrix. The current 
status (for details see Matricardi and McNally, 2013a, Matricardi and McNally, 2013b; Matricardi and 
McNally, 2014) is that the PC assimilation system (in clear sky only) performs as well as – and in 
some respects slightly better than – the current ECMWF operational IASI radiance assimilation that 
also uses radiances peaking above clouds and overcast scenes. In addition, performance tests indicate 
that the use of PC scores in the 4D-Var minimization requires ~25% less computer resources (elapsed 
CPU time) compared to a system that assimilates the full number of equivalent radiances. This figure 
represents a significant saving inside the time critical processing path for NWP centres, but could 
potentially be improved even further by better tuning the computational efficiency of the PC based 
fast model simulations.  

4. Handling of clouds in PC space 
As discussed in the previous section, thus far the assimilation of PC data has only been performed in 
cloud free conditions. The restriction of using only infrared sounding data that can be predetermined 
as clear represents a major under-exploitation of very high cost instruments such as the IASI. 
Estimates of cloud cover vary in the literature, but an instrument with a footprint of order 10Km will 
typically only yield between 10 − 30% completely clear soundings. Furthermore, using radiances only 
in clear-sky has the potential to bias the assimilation system towards particular synoptic or 
climatological regions (e.g. areas with low humidity) and there is evidence to suggest that cloudy 
areas are meteorologically sensitive (McNally, 2002) such that constraining analysis errors in these 
regions (with observations) is important to limit forecast error growth. 
 
Within the context of radiance assimilation a number of significant steps towards a better utilization 
of high spectral resolution infrared sounders have been taken in recent years. Cloud detection schemes 
have been improved beyond finding completely clear locations (e.g. English et al., 1999) towards 
identifying clear channels (i.e. those channels above the cloud) in potentially cloud affected locations 
(e.g. McNally and Watts, 2003). However, the broad vertical extent of radiance weighting functions – 
with significant sensitivity at altitudes far above and below their peak – results in radiance data use 
above clouds located in the mid to upper troposphere still being highly restricted. 
 
Acknowledging that the observed radiance spectra contain potentially useful information on clouds – 
a number of approaches have been developed to explicitly treat cloud parameters simultaneously with 
other variables such as temperature and humidity. These range from the treatment of weakly affected 
radiances in a 1D-Var pre-processor and passing cloud parameters to the main assimilation step (e.g. 
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Pavelin et al., 2008) to the direct assimilation of homogeneous fully overcast spectra in a 4D-Var 
system (McNally, 2009).While these two special cases of cloud (weak and homogeneous overcast) 
yield very useful information – as yet there is no operational treatment infrared data in all cloudy 
conditions along the lines of the microwave all-sky generalised framework.  

4.1 The construction and assimilation of PC scores above cloud 

In this section we assess to what extent the approaches that have been developed for handling clouds 
in radiance assimilation can be adopted in PC space. To gauge the likely benefits (in terms of 
improved forecast skill) a number of radiance assimilation experiments have been run exercising the 
various options (currently available at ECMWF) for handling clouds in IASI spectra. Specifically we 
have measured the benefits with respect to a no-IASI baseline of the following: 1) IASI in fully clear 
scenes only, 2) IASI in fully clear scenes plus clear channels above clouds, 3) IASI in fully clear 
scenes plus clear channels above clouds plus full overcast spectra. The results are presented in Figure 
3 for the Tropics and Southern Hemisphere (regions where the signals are largest). 
 
 
 
 

 
 

Figure 3: The forecast impact associated with different approaches to handling clouds in IASI 
radiance data. The vertical bars show the percentage reduction of average forecast errors (for 
500hPa geopotential height) with respect to a no IASI baseline when: only fully clear data are 
used (green), additional use is made of clear channels above cloud (red) and additional use is 
made of clear channels over cloud plus fully overcast scenes. 

 
 
It can be seen that in the Tropics there is a significant impact of assimilating just the fully clear 
spectra and a modest stepwise improvement in skill when varying degrees of additional cloudy data 
are retained (either using clear channels above cloud or overcast scenes). However, in the Southern 
Mid-latitudes the benefit of assimilating only fully clear IASI spectra (compared to no IASI) is very 
small and much larger gains are made if additional cloudy data can be retained. These results 
demonstrate that the importance of exploiting cloudy data is much larger in the mid-latitudes where 
fully clear scenes are rare compared to the Tropics.  
 
To consider a potential PC analogue of the use of clear channels above clouds we must examine the 
Jacobians of the PC score observations (see Figure 1 for a selection of the leading eigenvectors). For 
any given cloud condition there may be channels with Jacobians that peak sufficiently high in the 
atmosphere that we may reasonably assume that they are unaffected by the cloud. Unfortunately –
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while it is possible to identify PC scores that are predominantly sensitive to the stratosphere or 
predominantly sensitive to the troposphere – the Jacobians are non-local with multiple peaks 
throughout the troposphere and stratosphere. For a given cloud condition it is thus impossible to find a 
PC score observation insensitive to the presence of the cloud.  

 
The non-locality of the PC score Jacobians is a direct consequence of the way the eigenvectors and 
PC score projections have been computed. If a particular PC score has contributions from a wide 
variety of IASI channels (e.g. from the stratosphere and the troposphere) it will – to a varying degree 
– retain the sensitivities of those channels. In this case a PC score which is predominantly sensitive to 
the stratosphere will nonetheless contain contributions from window channels that are highly sensitive 
to the presence of clouds. However, we can construct a PC score that is only sensitive to the upper 
atmosphere by constructing it from only IASI channels that peak in the upper atmosphere. 
Furthermore, for a given cloud condition we can construct a set of PC scores that are insensitive to the 
cloud by only allowing contributions from IASI channels that are insensitive to the presence of the 
cloud. There are two options to achieve this in practice: 

Option 1: We predetermine a set IASI channels that are always unaffected by cloud as the eigenvector 
training basis. Of course this channel basis will be restricted to the uppermost stratospheric sounding 
channels of IASI and in the case of low stratiform cloud this may still represent a gross under-
exploitation of the available IASI data. However, it has the technical advantage of allowing us to pre-
compute a fixed set of eigenvectors on to which PC scores can be projected when cloud is detected.  

Option 2: We run the radiance based cloud detection scheme as a pre-processor to identify what 
subset of channels can be used in a particular cloud affected scene. Using the climatological radiance 
training set for just these channels we re-compute (on the fly) a dedicated set of eigenvectors and 
project the measured spectrum to produce cloud free PC scores for this scene. While this optimises the 
use of IASI clear-sky information for each cloudy scene – it is a technically demanding option as it 
requires running the full radiance cloud detection scheme (to identify clear channels) and the 
calculation of different eigenvectors for each IASI pixel. 

4.2 The assimilation of PC data in overcast scenes 

To assimilate PC scores in overcast situations we require a forward model that can compute cloud 
affected PC scores. The PC radiative transfer model PC_CLD_RTTOV (Matricardi and McNally, 
2011) is capable of simulating cloud affected PC scores for any given input cloud condition. Of 
course the eigenvector basis upon which the model is trained will be completely different for clear-
sky and cloudy-sky calculations. This has implications when deciding upon an appropriate truncation 
for assimilation. For clear-sky spectra the leading eigenvectors describe the largest sources of 
variance – namely the surface emission, humidity and the stratosphere. However, when the 
eigenvectors are required to efficiently represent the variability of cloudy spectra the leading (highest 
ranking) eigenvectors describe the cloud signal itself – and the comparatively smaller sources of 
variance from atmospheric temperature and humidity reside in a range of lower order PC scores. This 
can be seen in the Jacobians calculated by PC_CLD_RTTOV for a cloud free scene, using a clear 
eigenvector basis and a fully cloudy eigenvector basis (Figure 4). Thus great care must be taken on 
choosing an appropriate truncation for the assimilation so as not to exclude lower order PC scores that 
contain useful atmospheric information. 
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In the assimilation of overcast radiances an estimate of the cloud conditions is obtained before the 
main assimilation to a) determine if the pixel is overcast and b) provide a linearization point for the 
subsequent forward calculations. For convenience there is no reason why this step should not still be 
done in radiance space for the overcast PC score assimilation. For a single level homogeneous 
overcast cloud the Jacobians of the cloudy PC scores terminate at the cloud top in the same way as the 
equivalent radiance Jacobian. This termination produces high resolution temperature information at 
the cloud top that in principle can be exploited by the assimilation scheme. This has been 
demonstrated in the radiance context, but not yet with PC scores. A technical consideration is that the 
current version of PC_CLD_RTTOV does not allow the user to input a simple single layer cloud 
fraction and amount. This functionality would have to be built in to PC_CLD_RTTOV or the input 
cloud profile variables could be constructed to act as a proxy for the simple single layer cloud (i.e. an 
optically opaque cloud must be formed with the required cloud top and fraction). Other than this no 
significant obstacles are foreseen to reproducing the functionality and benefits of overcast radiance 
assimilation in PC space. 

 

 

 

 
Figure 4: The temperature Jacobians for the six highest ranking PC scores computed by 
PC-RTTOV trained on: clear-sky spectra (left panel) and on all sky spectra (right panel). In 
both cases zero cloud is fed as input to the RT calculation. 

  

4.3 The all-sky assimilation of cloud affected PC data  

The assimilation of radiance data in any cloud conditions (the so called all-sky approach) is arguably 
the most comprehensive exploitation of infrared data, but is equally the most challenging and 
complex. For any given model state we compute fully cloudy radiance spectra and compare these to 
observed cloudy radiances. Differences between the observed and simulated radiances are mapped 
back through a chain of adjoint operators (including those of the model physical parameterizations 
related to cloud) to adjustments of the model state vector. This approach is successfully implemented 
at ECMWF for the assimilation of microwave radiance data, but as yet the application to infrared data 
is only at the prototype stage. Challenges related to the extreme nonlinearity of the observation 
operators (and their adjoints) and the difficulty in reconciling the spatial scales of the NWP model and 
the observations could mean that an operational implementation is still several years away. Thus we 
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consider it premature to comment in this report on the likely success of the all-sky approach in PC 
space. However, it has already been stated that a based PC based fully cloudy fast model exists as 
such and if a solution in radiance space can be found – a PC implementation would not be far behind. 

5. Summary 
In this paper we have presented a discussion of NWP assimilation techniques based on the use of 
Principal Component Analysis and we have documented the development and the functionality of a 
global four-dimensional variation (4D-var) assimilation system based on the direct use of principal 
component data derived from IASI spectra. The primary aim of this development is towards an 
efficient use of the entire measured spectrum that could not be achieved by traditional radiance 
assimilation. The direct assimilation of principal component data typically allows an 8 fold reduction 
in data volume and a 25% reduction in the overall cost of assimilation. The new principal component 
scheme has been extensively tested in a full observing system where IASI observations used either in 
the form of principal components or radiances. Results suggest that the quality of the analyses 
produced by the assimilation of principal components is almost identical to that obtained when IASI 
radiances are assimilated. The verification of forecasts launched from these test analyses further 
confirms that there is no loss of skill from the assimilation of IASI PCs compared to that of 
radiances.The results obtained from the direct assimilation of IASI principal component data are 
extremely significant and encouraging. They demonstrate the viability of an alternative route to 
radiance assimilation for the exploitation of data from high spectral resolution infrared sounders in 
NWP. 
 
While the performance of the principal component assimilation system is impressive it is important to 
highlight that the use of PC data is currently restricted to fully clear spectra. This is an important 
limitation to the use of the PC system in an operational environment. We have suggested that it is 
reasonable to conclude that the steps that have been taken to handle clouds in infrared radiances can 
indeed be reproduced in PC space. However, to date little progress has been made in implementing 
the options discussed in this paper. This is due to the fact that dealing with clouds in PC space is 
technically demanding within the context of a global assimilation scheme, requiring the recalculation 
and storage of eigenvector projections and retaining a facility to identify clouds in radiance space 
before the PC analysis. While these technical demands are not insurmountable in the longer term, they 
have been considered beyond the demands of the research projects allocated to the study of PC 
assimilation in NWP. Nonetheless, the results of impact radiance assimilation trials with different 
cloud treatments demonstrate the importance of handling cloud affected scenes (particularly in the 
extra-tropical mid-latitudes) and could arguably preclude an operational implementation of PC 
assimilation until a solution is found. A pragmatic hybrid approach is conceivable where PC scores 
are assimilated in completely clear sky and, if cloud is detected, the assimilation system could be 
reverted to radiance assimilation. While this is far from elegant it is technically feasible. 
 
In the paper we have also argued that the use of radiances reconstructed from principal components is 
perhaps simpler to implement than the direct use of principal component data because NWP centres 
already know to deal with raw radiances. The use of reconstructed radiances would not require any of 
the significant technical and scientific investment needed to develop a system to directly assimilate 
PC scores. The techniques developed for handling clouds in assimilation systems based on raw 
radiances should be in principle applicable to reconstructed radiances. Although at a theoretical level 
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the assimilation of PC scores or reconstructed radiances can be considered equivalent (if we do 
everything correctly), the successful introduction of either of these approaches in an operational NWP 
environment will eventually depend on how well the various elements of the assimilation system can 
be practically implemented and tuned. Work is now needed to study the assimilation of reconstructed 
radiances and see whether this system can be considered as an alternative option for the safe and 
efficient exploitation of high spectral resolution data. 
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