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1 Introduction

I have been given a very broad topic – I have to be selective. I have chosen to consider only one type
of advance in data assimilation (DA) methods for NWP: the use of forecast errors of the day (EOTD).
At the heart of the THORPEX programme of the last decade was the ability, thanks to better science
and bigger computers, to predict the evolution and growth of forecast errors. It has been used within the
short time-window of 4DVar. Ensemble methods can predict over longer periods to estimate the EOTD;
section 2 describes DA methods making use of this: hybid-4DVar, 4DEnVar and the EnKF (focussing
on the LETKF as a popular “flavour”).

Developments are driven by the evolving capabilities of, and requirements for, NWP:

Computing: processors have stopped getting faster, so the hoped-for continuation of the steady increase
in power has to come from massively parallel machines. While we expect to soon be able to run
global convective scale models, this may be achieved by major revisions of both the scientific
model design and the software, e.g. GungHo, MPAS and NICAM models (Ford et al., 2013;
Skamarock et al., 2010; Satoh et al., 2008).

Nonlinearity: customer requirements require higher resolution and more use of observations affected
by cloud and precipitation, at scales where error evolution is more nonlinear (Hohenegger and
Schär, 2007).

Ensembles: there is demand for probabilistic forecasts and warnings of extreme events, best met using
ensemble forecasts (Golding, 2009).

Then in section 3 I change perspective, and look at some potentially difficult problems relevant to satel-
lite DA and how well the different methods handle them.

Finally in section 4 I abandon my attempts at balance, to give some personal conclusions.

2 DA methods for NWP

The current generation of DA methods for NWP typically assimilate many millions of observations to
produce the initial conditions for forecast models with O

(
109
)

state variables, often in less than an hour.
All methods must incorporate significant approximations to make such calculations possible on available
supercomputers. The main approximation is that errors are Gaussian, giving linear DA equations – some
non-Gaussian distributions can be handled by iteration of the linear equations, but we cannot afford fully
nonlinear DA.
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2.1 4-Dimensional DA Methods

All the methods in this paper perform a 4D best-fit to observations in a window, assuming Gaussian
background and observation errors. I use an underline to extend the standard notation of Ide et al.
(1997) to four dimensions, for instance xb is the background trajectory. The expected error covariance
of xb is P. This defines a Gaussian pdf for the 4D increment δx:

δx∼ N (0,P) , (1)

which gives the probability density that xb + δx is the true trajectory. All the methods variationally
determine the δx which maximizes the posterior Bayesian likelihood by minimizing a penalty function
measuring the distances from the background and the observations:

J (δx) =
1
2

δxT P−1
δx+

1
2
(
y−yo)T R−1 (y−yo) , (2)

where the second term is the observational penalty, measuring the difference of the observations in the
time-window (yo) from their model estimates (y). The latter are calculated as accurately as possible,
using the nonlinear observation operator. For the purposes of this paper we can simplify this to

y = H
(

xb +δx
)

. (3)

P is BIG! We cannot even estimate it fully (Dee, 1991), let alone compute 1
2 δxT P−1

δx. The solution
is to model P using a sequence of operations we can compute, then use these to transform δx so that
1
2 δxT P−1

δx simplifies.

2.2 Hybrid-4DVar

2.2.1 Using climatological covariance B

The traditional 4DVar models the 3D covariance using transforms

B = UUT (4)

and use these to construct the 3D analysis increment

δx0 = Uvc (5)

which is made 4D using linear forecast model M

δx = Mδx0 (6)

This gives an implicit 4D prior covariance

P = MBMT (7)

and a transformed penalty function

J (vc) =
1
2

vcT vc +
1
2
(
y−yo)T R−1 (y−yo) (8)
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Figure 1: Left: covariances from 100 samples from the solid curve. Right: Same covariance sam-
ples, localised by a Schur product with the red localisation function. (Lorenc, 2003)

2.2.2 Weaknesses of traditional 4DVar

1. Climatological covariances B

2. Lack of parallelisation

3. Lack of an analysis ensemble

Weakness 1 can be addressed by introducing EOTD from an ensemble; 2 can be addressed by 4DEnVar,
as discussed below. I do not have time to discuss 3 further. It is currently addressed either by using an
external EnKF or by running ensembles of 4DVar (Bonavita et al., 2012). The latter is very expensive
for a large ensemble. Research is underway into less expensive methods, e.g. Auligné (2012).

2.2.3 Ensemble covariance filtering

B is BIG! To get anything like a reasonable estimate from an EOTD ensemble we need a large ensemble
PLUS clever covariance filtering, based on two ideas:

• We make assumptions about local homogeneities, and smooth accordingly to reduce sampling
error. This can be done by horizontal, rotational, and time averaging.

• We make assumptions that certain correlations are near zero, and “localise” them towards zero.
This can be done in the horizontal and vertical, in spectral space, and between transformed vari-
ables.

Even with these, we get better results using a hybrid of the EOTD estimate with a climatological B.
There are two methods of making a hybrid in 4DVar, both can use some of the above ideas:

1. Train [part of] a covariance model, like that used for B, using current (or recent) ensembles. This
is the method used at ECMWF and Meteo-France.

2. Augment B by using localised ensemble perturbations (Clayton et al., 2013).

I will show how to implement method 2 later. First I discuss some examples of covariance filtering in
the two methods:

• I will start with basic horizontal covariance localisation (Hamill et al., 2001; Houtekamer and
Mitchell, 2001), since this is usually the only filtering idea in EnKF and it was the first tried in
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Figure 2: AROME ensemble s.d. of humidity at ∼945 hPa: Left using 84 members; Centre using 6
members; Right using 6 members and horizontal filter (Ménétrier et al., 2014).

Figure 3: MOGREPS ensemble s.d. of pressure at∼10 km: Left raw ensemble (22 members); Right
after spectral localisation in 6 wavebands.

Figure 4: Correlations between levels for divergence (vertical axis) and rh (horizontal axis) for
a precipitating column from the ensemble in fig. 3. Left: raw ensemble; Centre: horizontally,
vertically and waveband localised ensemble; Right: inter-variable localised ensemble.
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En-Var methods. Figure 1(left) shown covariances from 100 samples drawn from a covariance
function which drops to zero at long distance. It seems clear that the noise is relatively more
important where the correlation is small (Lorenc (2003) showed one way of quantifying this) so
the idea is to reduce such samples towards zero. We have to retain a valid covariance function
– this is ensured by using a Schur product with a valid correlation function, in this case the red
curve in Figure 1(right). The Schur product, denoted C ◦Pe, is an element wise product of the
localisation matrix C and the sampled covariance Pe. Localisation is designed to mitigate the
small ensemble size used in EnKF and En-Var methods. It should be less needed if training
a covariance model with a larger sample. A covariance model can impose similar effects by
assumptions about the shape of the covariance function being fitted to the training ensemble.

• Many covariance models used in method 1 separate into variance fields and a correlation model,
in which case it is straightforward to provide the variance fields from an ensemble. Raynaud et al.
(2009) suggested filtering them, and this is applied by Bonavita et al. (2012). Figure 2 comes
from a study to apply the same method at the convective scale. Using method 2 it would be
harder to apply explicit filtering to the variances, but figure 3 shows that similar smoothing can
be achieved by spectral localisation (Buehner and Charron, 2007; Buehner, 2012); the amount of
filtering is controlled by the spectral width of each waveband. (The ECMWF wavelet covariance
model (Fisher, 2003) uses similar wavebands.)

• Time-averaging is natural in method 1 – simply use the ensembles from a long enough period to
derive coefficients in B. It is even possible to use different periods for different parts, e.g. early
attempts update only the variances using EOTD. Some time-averaging can be added to method 2
by using lagged ensembles (i.e. longer forecasts from an earlier cycle). Another approach is to
time shift the current ensemble trajectories, e.g. by +-1 hour, to increase the effective ensemble
size.

• The ECMWF system, by training covariances grouped by global wavenumber, performs a di-
rectional averaging in method 1. This is not essential in covariance models, e.g. Purser et al.
(2003a,b). Examples such as figure 5 suggest this is often not appropriate – which is lucky be-
cause there is no easy way to do it in method 2.

• The covariance models used in method 1 perform a variable transform (Derber and Bouttier,
1999; Lorenc et al., 2000), then assume there is no correlation between the different variables.
While correct on average, this does not correctly model covariances involving divergence, vertical
motion, and moisture in precipitating situations (Montmerle and Berre, 2010). The Met Office
system using method 2 (Clayton et al., 2013) transforms the ensemble in the same way (to avoid
imbalance from horizontal localisation), so it is easy to provide an optional “localisation” between
the variables – its effect is seen in figure 4. The raw ensemble correlations are noisy; the localised
ensemble has less noise while retaining plausible features like a positive correlation of rh with
convergence below and divergence above; the inter variable localisation, as expected, removes all
correlations between rh and wind.

The two approaches to hybrid covariances start from different ends: method 1 starts from a climatolog-
ical covariance model, then adds ensemble-derived coefficients; method 2 starts from a raw ensemble
then filters the covariances. Eventually they might approach each other in the middle. As we shall see
later, there is less scope for these methods in the EnKF, other than simple spatial localisation.
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2.2.4 En-4DVar: using an ensemble of 3D states which samples background errors

It is helpful to define an ensemble perturbation matrix

X =
[

x′1 · · · x′N
]

(9)

where

x′k =
1√

N−1
(xk− x̄) (10)

We model the 3D background error covariance as localised ensemble covariance

P = C◦XXT (11)

then model C using transforms

C = UαUαT (12)

The initial increment δx0 is a linear combination of ensemble perturbations x′k, localise by weights αk
which are constrained to be smooth, consistent with (12)

αk = Uαvα
k (13)

δx0 = ∑
N
k=1αk ◦x′k (14)

The 4D increment uses the linear forecast model M as in normal 4DVar

δx = M∑
N
k=1αk ◦x′k (15)

Lorenc (2003) showed that localising x′k with αk sampled such that
〈
αkαT

k

〉
= C is equivalent to using

a localized covariance C◦XXT . So the 4D covariance is

P = M
(
C◦XXT )MT (16)

To use the same software, with the background penalty transformed into a dot-product, we concatenated
control vectors vT =

[
vαT

1 · · ·vαT
N

]
, giving the transformed penalty function

J (v) =
1
2

vT v+
1
2
(
y−yo)T R−1 (y−yo) (17)

2.2.5 hybrid-4DVar

This is a simple combination of the climatological and ensemble methods. We use a 4D analysis incre-
ment

δx = M

(
βcUvc +βe

N

∑
k=1

Uαvα
k ◦x′k

)
(18)
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Figure 5: Zonal wind responses (filled thick contours, with negative contours dashed) to a single
zonal wind observation at the start (left-hand plots) and end (right-hand plots) of the 6-hour 4D-Var
window. The plots are for the same time and model level (≈ 500 hPa) as the observation. Upper
plots are for the non-hybrid configuration; lower plots for the hybrid. The observation location
is marked with a black dot at the centre of each plot. The unfilled contours show the background
temperature field. (Clayton et al., 2013)

and concatenated the control vectors vT =
[
vcT ,vαT

1 · · ·vαT
N

]
, giving a localized 4D covariance

P = M
(
β

2
c B+β

2
e C◦XXT )MT (19)

Hybrid-4DVar was made operational at the Met Office on 20 July 2011, giving about a 1% reduction in
RMS forecast errors (Clayton et al., 2013). Figure 5 illustrates the effect of the hybrid, particularly on
covariances at the beginning of the 4DVar window which previously had no flow dependence. At the
end of the window the effective covariances are MBMT and even for a 6 hour window show stretching
along the jet. The hybrid covariances show a similar stretching from the start.

2.2.6 Parallelisation

4DVar has several potential problems looming in the next decade; they will affect different centres at
different times depending on their computers and models:

1. To run fast enough on massively-parallel (MPP) computers we will need to use millions of parallel
threads. Horizontal domain-decomposition is not enough, especially in the sequential runs of
lower-resolution linear (PF) and Adjoint models inside a 4DVar minimisation.

2. Projects are underway promising significant redesign of forecast models, to address the MPP issue
for the forecast model. This means we may have to re-write the PF and Adjoint models.
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While some mitigation is possible (e.g. Fisher and Auvinen (2011)), the simplest solution to both
problems is to use the ensemble trajectories, which can be pre-calculated in parallel, instead of the
models inside 4DVar.

4DEnVar, described in the next section, does this while retain the rest of the 4DVar infrastructure. Note
that this still needs global operations such as smoothing (currently done using spectral transforms) and
Poisson solvers. For some models even these may not be available; if so the LETKF is an easier approach
(Kondo and Tanaka, 2009).

2.3 4DEnVar: using an ensemble of 4D trajectories which samples background errors

The is simply derived by adding a time-dimension to all the variables in (9), (10), (11), (12), (13) and
(14):

X =
[

x′1 · · · x′N
]

(20)

x′k =
1√

N−1
(xk− x̄) (21)

P = C◦XXT (22)

C = UαUαT . (23)

In general Uα needs a time component, which should follow the expected propagation of information
(Bishop and Hodyss, 2009a,b; Ota et al., 2013)

αk = Uαvα
k (24)

δx =
N

∑
k=1

αk ◦x′k, (25)

but current large NWP systems simply build a 4D C which does not vary in time, using a persistence
forecast I and the same 3D C = UαUαT . In this case the 4D δx can be built one time-level at a time,
from 3D localised perturbations and constant αk = Uαvα

k

δx(t) = ∑
N
k=1αk ◦x′k (t) (26)

To make the link with the LETKF later it is helpful to rewrite this using a matrix whose columns are the
N ensemble αs, and use 1N to denote a column vector of N 1s

A =
[

α1 · · · αN
]

(27)

δx(t) = (A◦X(t))1N (28)
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Figure 6: The background field at 3-hourly intervals. The test observation was placed at the black
dot at the first time (Lorenc et al., 2014).

Figure 7: Top: propagation of the increment δx in 4DEnVar with localisation scale 1200 km. Bot-
tom: propagation of the increment δx in En-4DVar (Lorenc et al., 2014).

Figure 8: ESC field calculated using (29) for the final time in 4DEnVar (left) and En-4DVar (right)
(Lorenc et al., 2014).
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Figure 9: As figure 7 but for 50% hybrids: Top: propagation of the increment δx in hybrid-4DEnVar.
Bottom: propagation of the increment δx in hybrid-4DVar (Lorenc et al., 2014).

The concatenated control vectors and transformed penalty function (17) are unchanged.

Comparing (15) with (25), we see we have a different type of linear model – 4DVar uses M to calculate
δx, whereas 4DEnVar directly calculates δx from a linear combination of ensemble trajectories. The
behaviour of these models is best seen in a single observation experiment in a jet stream (figure 6).
Figure 7 shows the propagation of the increments in 4DEnVar (top) and En-4DVar (bottom). At the
initial time they are virtually identical, as expected because the observation is at the start, making them
both 3D. The subsequent propagations are very similar - it is hard to judge between them. An objective
measure is given using the difference from a nonlinear model trajectory1 (29). Figure 8 shows that
4DEnVar increments are slightly more consistent with the nonlinear model. On a hurricane case (not
shown here) 4DEnVar was noticeably more consistent.

ESC = (M0→6 (xb +δxa
0))− (M0→6 (xb)+δxa

6) (29)

Hybrid-4DEnVar is constructed like hybrid-4DVar with an important different – because we want to
avoid using any model inside 4DEnVar the climatological part is persisted, as in 3DVar.

δx = βcIδx0 +βe

N

∑
k=1

αk ◦x′k (30)

P = β
2
c IBIT +β

2
e C◦XXT (31)

The first Met Office trial of 4DEnVar (Lorenc et al., 2014) copied its settings from the hybrid-4DVar
(Clayton et al., 2013), in particular the localisation matrix C with scale 1200 km and the hybrid weights
β 2

c = 0.8, β 2
e = 0.5. Results were disappointing: while hybrid-3DEnVar performed equally to hybrid-

3DVar, as they should, but while hybrid 4DVar beat hybrid-3DVar by 3.6% 2, hybrid-4DEnVar only beat
hybrid-3DEnVar by 0.5% (measured on a basket of RMS verification scores). The reason was the large
weight given to the climatological covariance, which is treated the same in 3DEnVar and 4DEnVar. This
effect is illustrated in figure 9, where the hybrid-4DEnVar propagation is split - half of the increment
does not propagate at all.

1Neither method here makes any allowance for model error, although they can.
2Rather more than expected – more than on 4DVar’s implementation Rawlins et al. (2007).
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Lorenc et al. (2014) concluded that we need to reduce the weight on climatological B relative to the
ensemble covariance. But these weights are usually determined by experiment; both components pro-
vide some benefit (Etherton and Bishop, 2004; Clayton et al., 2013). Increasing the ensemble weight
requires us to first improve the covariances derived from the ensemble by:

• a bigger ensemble;

• better ensemble generation;

• better covariance filtering.

As pointed out above, the parallelisation issues will hit different centres at different time. Canada are
already replacing 4DVar by 4DEnVar. Their 4DVar is not hybrid, and very inefficient. Their global
model is being replaced by one with a Ying-Yan grid, which does not have an adjoint. In trials global
4DEnVar analysis (~10 min) is ~6 times faster than 4DVar (~1 hr) on half as many cpus (320 vs 640),
even though much higher resolution increments (50km vs 100km). Scores were at least as good (Mark
Buehner, personal communication).

2.4 EnKF – common properties

EnKFs produce an analysis ensemble, so we need to extend the notation to distinguish background
values (Xb, previously X) and analysis values (Xa). The computations use the matrix of ensemble
model-ob perturbations. For linear H this would be given by Yb = HXb, but it is calculated using
nonlinear H:

y′
k
=

1√
N−1

(
H
(

xb
k

)
−H (xb)

)
(32)

Yb =
[

y′1 · · · y′
N

]
(33)

Most EnKF use the localised ob-gridpoint covariance

C◦YbXbT . (34)

There are two methods for calculation the analysis ensemble:

• Stochastic filters such as the operational EnKF in Environment Canada (Houtekamer and Mitchell,
2001; Houtekamer et al., 2014) use the same analysis equation for each member and perturb
observations (as in ensembles of 4DVar).

• SQRT filters (Tippett et al., 2003) analyses the ensemble mean, then calculate perturbations such
that XaXaT = Pa.

Stochastic filters are more robust to wrong assumptions, while SQRT filters have fewer sampling errors
and hence are usually more accurate (at least for toy problems).

2.4.1 LETKF

(Note below that I have put the factor 1/
√

N−1 in (32), to match that in (21). The equations of Hunt
et al. (2007); Harlim and Hunt (2007) apply the factor 1/

√
N−1 to w and α rather than Xb.)
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The ETKF equation for the mean analysis is a simple linear combination of the ensemble perturbations.
The weight use the Kalman gain expressed in ensemble space – the required inverse is solved directly:

δx = Xbw (35)

w = P̃a
(

Yb
)T

R−1
(

yo−H
(

xb
))

(36)

P̃a =
[

I+
(

Yb
)T

R−1Yb
]−1

(37)

The ETKF and LETKF are SQRT-filters; the analysis perturbations are calculated directly:

Xa =
(
P̃a)1/2 Xb

The LETKF solves these equations separately for each grid-point, with local observations. This obser-
vation selection is instead of (34), which cannot be applied in the ETKF. Each w is one row of matrix
A defined in (27), then, as in 4DEnVar, the analysis is given by 28. Like 4DEnVar, the LETKF is a
4D method, using ensemble background values which span the window. Again like current 4DEnVar
implementations, there is no suggestion that the weights could vary in time.

3 Some Difficult Issues for DA Methods

In this section I go through a few issues relevant to satellite DA, discussing how the methods might
cope. The issues are chosen to be difficult for at least one of the methods, sometimes all of them. Many
are simplified or theoretical studies – whether they are relevant depends on the application and NWP
system. For instance several issues become less visible with realistic (larger) observation errors.

3.1 Dense but incomplete observations, tracers

Remote sensing usually gives observations that are dense in space and time, but incomplete in that
they do not observe all the variables necessary to define a state, for instance satellite soundings of
temperature or radar observations of radial wind. Diagnostic relationships such as geostrophy are not
accurate enough to help in modern NWP systems. We need to use the prognostic equations, which
link space and time gradients of different variables. All the methods discussed are four-dimensional
and can do this within the window considered. In principle a Kalman filter can do it between windows
because the forecast covariance reflects the positions of previous observations. A localised ensemble
cannot however reflect all the detail, so information depending on accurate observed tendencies will not
be fully utilised.

An example of this process is the extraction of wind information from a sequence of tracer fields. Lorenc
(1988) shown that nonlinear 4DVar could use a sequence of tracer observation in one time-window in
a toy model. Daley (1996) showed that a sequential Extended Kalman Filter could recover wind fields
from tracers, as long as there were sufficient observations so that the filter-estimated background field
stayed close enough to the truth for gradients to be accurate. If the displacements are seen with reference
to the background, then linear incremental 4DVar, 4DEnVar or the EnKF can work. Andersson et al.
(1994) saw impacts on winds in an early version of 4DVar (but did to verify them); Peubey and McNally
(2009) measured an impact. This will be discussed more in Mary Forsythe’s talk at this Seminar.

Simple spatial localisation causes a problem for 4DEnVar or the EnKF. The severe localisation needed
to assimilate dense observations will limit the ability to extract a large-scale wind field – more generally

12 ECMWF Seminar on Use of Satellite Observations in NWP, 8-12 September 2014
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Figure 10: Left: Mean errors in model T and RH, when composited by the cloudy inversion level in
the model. Each curve if for a different inversion level. Right: Correlations of T and RH with level
5, for the same composites (Lorenc, 2007).

the fine details in the imagery are useful in determining large-scale wind, so it is best to treat all scales
together, as variational methods do. 4DEnVar does give the option of scale-dependent localisation
(Buehner, 2012). This is research in progress.

3.2 Synergistic observations

The advantage of using synergistic observations together was a motivation for ECMWF’s first DA
scheme, which used a then unprecedented 191 observations at once! Lorenc (1981) table 1 showed
the benefit of using surface pressure, thickness and wind together. This is because the model footprint of
their observation operators overlapped. Much more relevant today are the overlapping weighting func-
tions of a radiometer, or the use of a vertically integrated observation with an in-situ surface observation.
An extreme example is variational bias correction, where the co-location of one biased satellite observa-
tion with an accurate in-situ observation allows others some way away to be used more accurately. The
benefit of synergistic observations is easiest to see in idealised examples with accurate observations, but
likely has a small effect with normal (relatively large) observational errors.

Observation-space localisation effectively alters the H operators and can damage the synergy. Campbell
et al. (2010) showed that observation space localisation degraded a 1D ensemble DA of radiances.
Model-space localisation used in hybrid-4DVar and 4DEnVar is better in this respect.

3.3 Cloudy inversions

Lorenc (2007) performed a study of 6 hour forecast profiles from the Met Office global model, compared
to collocated radiosondes mapped to model levels. A simple algorithm to detect cloudy inversions was
applied, and the results composited for cloud layers. Conclusions were:

1. It is common for the model to have a plausible cloudy inversion structure in the wrong place.

ECMWF Seminar on Use of Satellite Observations in NWP, 8-12 September 2014 13
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Figure 11: Extra weights making the penalty function non-quadratic, when assimilation humidity
derived from cloud observations (Renshaw and Francis, 2011).

This leads to error distributions which are non-Gaussian, with the mean of the PDF giving a
profile which is unrealistically smooth and apparently biased. This is a fundamental problem of
minimum-variance best-estimate methods; it cannot be cured by better covariances within such
methods.

2. The climatological error variances are about right for average conditions. But they should be
about doubled for temperature and humidity near cloud-topped inversions.

3. The climatological vertical correlations are about right for average conditions, but correlations are
too large across cloud-topped inversions, where they should be near zero.

Conclusion 1 applies to all the methods discussed here - it just shows the difficulty of our subject and
the importance of the forecast model as discussed in 3.5. Assimilating IR imagery information on cloud
tops is likely to remain difficult for all the methods described in this paper.

Conclusions 2 and 3 show the importance of situation-dependent covariances. These could be from
ensembles as in the methods discussed here, or cleverer covariance models such as that of Piccolo and
Cullen (2011).

3.4 Non-Gaussian observed variables

Some observations are “simple” nonlinear functions of the model (e.g. wind speed). Some observations
only give limit information on the model state (e.g. the presence or absence of cloud; figure 11). They
can be handled by a nonlinear observation operator H in (3) or a variable R in (2). Variational method
need to linearise this, but this can be about a current best estimate, which should be more accurate than
the background. In most variational schemes, following Courtier et al. (1994), (3) is approximated using
the innovations d from the background or guess, as in

yo−H
(

xb
)

= d (38)

yo−y = d−Hδx. (39)

This gives a quadratic penalty function, but means H can only be re-linearised in a full outer-loop. The
Met Office variational DA system retains the nonlinear (3), so it can re-linearise H without rerunning
the (expensive) full model.
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Figure 12: Idealised EnKF of a perfect wind speed observation. Left: background ensemble. Right:
analysis ensemble, showing also ensemble mean and s.d. in red. To fit the observation, the ensemble
members should lie on the circle (Lorenc, 2003).

EnKF method on the other hand effectively use the average linearisation over the ensemble members.
This is on average less accurate, as illustrated in figure 12, but makes them more robust in on-off situ-
ations – as long as one member has the observed values the EnKF will draw partly towards it whereas
variational methods can get stuck because the gradient of zero is zero.

For observations of variables predicted by complex physical paprametrisations in the model (e.g. radar
reflectivity) the robustness and simplicity of ensemble approaches of 4DEnVar and the EnKF are an
advantage. They simply need the ensemble predictions of the observed parameter (although they work
better if it is transformed to have a near-Gaussian distribution). 4DVar requires the model parametrisa-
tion to be simplified, regularised (i.e. made more smooth) and linearised – this is much more work.

3.5 Initialisation – Spin-up – Staying near the attractor

Although the methods considered here are basically linear, we have to be thankful the world in nonlinear.
Otherwise, some perturbations would grow and grow. Instead Abarbanel et al. (2010) suggested we only
need as many observations as the number of positive conditional Lyapunov exponents of the nonlinear
dynamics of the model – a much smaller number than the degrees of freedom of a high-resolution model.
As discussed in 3.3 for cloudy inversions, it is impossible for a Gaussian DA scheme to put a structure
maintained by nonlinear processes in place just from observations that it is there; we would need detailed
coverage. Since model resolution is increasing faster than the number of observations, this problem is
increasing – convective scales are more nonlinear (Hohenegger and Schär, 2007). There has been little
fundamental research in this area relevant to NWP, yet most DA developers know the technical steps
which help keep the assimilated state near the attractor (i.e. in the set of plausible states): only alter
the model near observations which disagree with it, initialise the increments to be close to some sort of
balance, and allow/encourage the model to adapt towards its attractor.

Of the methods considered in this paper, perhaps 4DVar with a long window has the best chance (al-
though the weak-constraint method of Fisher and Auvinen (2011) loses this by not doing long model
runs). More pragmatically, the 4DIAU is addressing the issue for 4DEnVar (Lorenc et al., 2014).
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4 My Personal Conclusions

Nearly 6 years ago in Buenos Aires at the WWRP/THORPEX Workshop on 4D-Var and Ensemble
Kalman Filter Intercomparisons, I said that global 4DVar was good for perhaps a decade. While that
was probably right, I would not repeat the prediction now. I think the scientific advantages of 4DVar are
decreasing and will not in the long-term outweigh the increasing technical difficulties of parallelisation
and software maintenance. As radically new models aimed at efficient parallelisation are introduced,
centres will not judge it worthwhile to develop 4DVar. This has already happened in Canada (Buehner
et al., 2013) – at NCEP they never implemented 4DVar and are happy to by-pass it (Kleist and Ide,
2014a,b).

At the convective-scale which will be the research focus for the next decade, ensemble systems are
essential because of the forecast uncertainty. The difficulty of developing accurate models, accessing
and processing enough observations and the sheer computational cost will dominate. Perhaps this will
militate in favour of the simple EnKF, nevertheless my personal favourite is 4DEnVar because of its
ability to handle large-scale errors by also using a global ensemble, and for consistency with the global
system.

At longer time-scales who knows? Computers may continue to increase at a rate that enables convective-
scale global NWP (although I believe global NWP may fall further behind the leaders, so resources
for global NWP do not increase as fast as in the past). Unless we have a corresponding increase in
observations, I predict that convective-scale global NWP models with be practicable long before we
have DA methods to initialise all the scales they resolve.
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