

ERA-CLIM2 WP4 Session Starter DWD, ECMWF, FFCUL, RIHMI, UNIBE, UNIVIE, UVSQ

Leopold Haimberger

Thursday 10 December 2015

Main tasks

- Making optimal use of observations in reanalysis, and providing end users with meaningful information about uncertainties in reanalysis products.
- Range of activities,
 - quality control and error estimation for input observations,
 - work on bias correction and homogenisation of data records,
 - quality assessments of reanalysis products based on independent observations and comparisons with other reanalyses and highlevel observational products.

From ERA-CLIM2 proposal

- Additional information about the usage and assimilation of observations is fundamental to a full understanding of uncertainties in many applications. Nevertheless, it has always been very difficult, if not impossible, for users to access this type of information.
- The ERA-CLIM project has addressed this shortcoming by developing the Observation Feedback Archive (OFA).
- It will continue to be maintained, developed, and supported in ERA-CLIM2, and will provide a permanent source of information about the quality of the observational record.

Current status

- OFA is great for surface data
- The OFA for upper air data is scattered over many places, incomplete, hard to access
- Responsibility for ingestion of newly digitized data is currently unclear
- Using upper air background departure statistics for QC is still too challenging, especially if they have not been assimilated
- Could that be changed until the end of ERA-CLIM2?

Global Reanalyses

- ERA-20C (Jan 1900 Dec 2010)
- ERA-Interim (Jan 1979 present)
- ERA-Interim/LAND (Jan 1979 Dec 2010)
- ▶ ERA-20CM (Jan 1900 Dec 2010)
 - ▶ <u>Final</u>
 - Experimental
- ERA-40 (Sep 1957 Aug 2002)
- ERA-15 (Jan 1979 Dec 1993)

Observation Feedback

- ERA-20C (Jan 1900 Dec 2010)
- ISPD v2.2
- ICOADS v2.5.1 with interpolated NOAA 20CR feedback

Adjustment of early radiosonde temperatures

Unadjusted

RAOBCORE adjusted

RICH adjusted

- Radiosonde T-trends 1954-1974, at 300 hPa.
- Reference Series ERA-preSAT (-1967), JRA55 (1968-1979)
- Improvements due to digitized FSU data, ERA-preSAT observation feedback archive
- Part of D4.1

Mean energy budget of the polar cap

- Main balance between horizontal energy transport and radiative energy loss at TOA
- Observed ocean warming and ice melt rates are small residual of large fluxes
- → Sum of the fluxes across 70N and TOA should yield mean energy storage in the polar cap!

The state of the coupled Arctic energy budget (70-90N)

• Add up atmosphere, ocean, ice equations and integrate over polar cap

 $\left\{\text{Rad}_{\text{TOA}}\right\} + F_{A}(70\text{N}) + F_{O}(70\text{N}) + F_{I}(70\text{N}) = \left\{\text{OHCT}\right\} + \left\{\text{IHCT}\right\} + \left\{\text{AET}\right\} + \text{imbalance}$

2000-2014 averages (CERES, ERA-I, ORAP5, JRA55,...):

Net heat flux into polar cap [Wm ⁻²]		Heat storage [Wm ⁻²]	
Rad _{toa} (CERES)	-116.1±0.4		
F _A across 70N	95.3 (92.3,98.7)	atmosphere	0.1±0.1
F _o across 70N	18.5±0.4	Ice melt	0.3±0.3
F_{I} across 70N	≈3 (Serreze et al 2007)	Ocean heat content	0.7±0.5
Sum of fluxes	0.3±0.9	Storage sum	1.1±0.6

Seasonal trends over polar region

- Positive summer trend of F_s driven by Rad_{TOA} \rightarrow ice-albedo feedback
- Negative autumn trend of F_s driven by atmospheric energy convergence – associated with decreased baroclinicity

2 WP4 session start Dec 10, 2015

Arctic gateway array (since 2004)

Tsubouchi et al. 2012

Deliverable	Description (Lead beneficiary)	Deliv	ery month	Comment	
		Original	Amended		
D4.1	RS bias adjustments (UNIVIE)	12	20	delivered	
D4.2	Updated RS bias adjustments (UNIVIE)	36	48	ERA5 and a ERA-preSAT rerun are expected to be much better reference than previous reanalyses but are not available in month 36. Value of deliverable would be significantly degraded	
D4.3	QC for obs from FFCUL (FFCUL)	36	48	FFCUL had difficulties in personnel recruitment and works hard on digitization of Chilean and other data. This has priority for now. QC aspect would improve a lot if 12 months more are available	
D4.3	Visualization tool for QC (FFCUL)	12	12	delivered	
D4.5	QC for upper-air, surface, and snow obs. (RIHMI)	36	36	no impact expected	
D4.6	Methodology for quantifying obs error (UBERN)	36	36	no impact expected	
D4.7	Verification of precipitation against GPCC (DWD)	36	48	Data set will be ready but validation of ERA5, CERA-20C would not be possible	
D4.8	Global energy, water, carbon cycles (ECMWF,UNIVIE, UVSQ)	36	48	Evaluations without ERA5, CERA-20C would be much less innovative	
D4.9	Upper air data gc (UBERN, RIHMI)	24	24	no impact expected	
D4.10	Comparison with other reanalyses (UNIVIE; ECMWF)	36	48	Comparisons without ERA5, CERA-20C would be much less innovative	
D4.11	Low frequency variability and trends (ALL)	36	48	Without completed ERA5, CERA-20C many evaluations would have to be based on data not created in ERA-CLIM2	
D4.12	Uncertainty of input parameters for carbon budget (UVSQ)	12	20	delivered	
D4.13	Confidence intervals on carbon fluxes (UVSQ)	36	48	Those would have to be based on existing ERA-20C, not new CERA-20C	
D4.14	Comparison of CTESSEL, ORCHIDEE flux estimates (ECMWF, UVSQ, UNIVIE)	36	48	This could be done partly with unfinished CERA-20C but much value would be added if complete CERA-20C set were available	

Complex energy budget diagnostics

- Key for comprehensive climate model validation
- Some terms missing in reanalysis output, should be complemented to comply with CMIP requirements

What we have:

Atmosphere

$$\nabla \cdot \mathbf{F}_{A} = \operatorname{Rad}_{TOA} - \operatorname{AET} - \mathbf{F}_{S}$$

- Rad_{TOA}: satellite data (CERES)
- $\nabla \cdot F_A$: mass-corrected from atmospheric reanalyses
- F_S: directly from model-forecasts (biased) or indirectly from other atmospheric fields (accumulated errors)
- Ocean

$$\nabla \cdot \mathbf{F}_{O} = (1 - f_{i}) \mathbf{F}_{S} + f_{i} \mathbf{F}_{IB} - OHCT$$

- $\nabla \cdot \mathbf{F}_{o}$: directly computed from ORAS4 (soon: ARCGATE)
- OHCT: from ocean reanalyses with very different data assimilation approaches
- Sea ice

$$\nabla \cdot F_{I} = f_{i}F_{S} - f_{i}F_{IB} - IHCT$$

- Sea ice mass from coupled ocean-ice reanalyses (ORAP5) or ice reanalyses (PIOMAS)
- Sea ice extent to understand changes in fluxes

From ERA-CLIM proposal

- Together with other in-situ and remote-sensing datasets available from existing data archives, the observations collected for ERA-CLIM will be included in a newly developed Observation Feedback Archive.
- Quality feedback information for this archive, including data departures and bias estimates, will be generated during several new pilot reanalyses, as well as from existing reanalysis datasets.
- The pilot reanalyses and the Observation Feedback Archive will be made available to users world-wide as a unique resource for climate research and observational studies of the Earth system.

