Toward variational data assimilation for coupled models: first experiments on a diffusion problem

Rémi Pellerej, Arthur Vidard, Florian Lemarié

INRIA Rhône-Alpes, AIRSEA Team
Laboratoire Jean Kuntzmann, Grenoble

Context - Intra-model coupling

Monolithic method

- A single tridiagonal system
- Unnatural for multiphysics problems

Partitioned method

- Γ is a physical interface
- We need to deal with interface/transmission conditions

How to handle this partitioned approach in the assimilation process?

Context - Schwarz waveform relaxation

Iterative solution of the direct partitioned problem (strong coupling)

$$
\left\{\begin{array} { r l l }
{ \mathcal { L } _ { 1 } \mathbf { u } _ { 1 } ^ { k } } & { = f , } & { \text { in } \Omega _ { 1 } \times [0 , T] } \\
{ \mathbf { u } _ { 1 } ^ { k } (z , 0) } & { = \mathbf { u } _ { 0 } (z) } & { } \\
{ \text { in } \Omega _ { 1 } } \\
{ \mathcal { F } _ { 1 } \mathbf { u } _ { 1 } ^ { k } } & { = \mathcal { F } _ { 2 } \mathbf { u } _ { 2 } ^ { k - 1 } } & { } \\
{ \text { on } \Gamma \times [0 , T] }
\end{array} \quad \left\{\begin{array}{rll}
\mathcal{L}_{2} \mathbf{u}_{2}^{k} & =f, & \text { in } \Omega_{2} \times[0, T] \\
\mathbf{u}_{2}^{k}(z, 0) & =\mathbf{u}_{0}(z) & \text { in } \Omega_{2} \\
\mathcal{G}_{2} \mathbf{u}_{2}^{k} & =\mathcal{G}_{1} \mathbf{u}_{1}^{k-1} & \text { on } \Gamma \times[0, T] \\
& & k \text { is the iteration number }
\end{array}\right.\right.
$$

at convergence: $\mathcal{F}_{1} \mathbf{u}_{1}=\mathcal{F}_{2} \mathbf{u}_{2}$ and $\mathcal{G}_{1} \mathbf{u}_{1}=\mathcal{G}_{2} \mathbf{u}_{2}$ on $\Gamma \times[0, T]$
$\Rightarrow \mathcal{F}_{j}$ and \mathcal{G}_{j} are interface operators chosen to ensure that the coupled problem is well-posed (and possibly to accelerate convergence)

Context - Schwarz waveform relaxation

 Iterative solution of the direct partitioned problem (strong coupling)$$
\left\{\begin{array} { r l l }
{ \mathcal { L } _ { 1 } \mathbf { u } _ { 1 } ^ { k } } & { = f , } & { \text { in } \Omega _ { 1 } \times [0 , T] } \\
{ \mathbf { u } _ { 1 } ^ { k } (z , 0) } & { = } & { \mathbf { u } _ { 0 } (z) } \\
{ \mathcal { F } _ { 1 } \mathbf { u } _ { 1 } ^ { k } } & { = \mathcal { F } _ { 2 } \mathbf { u } _ { 2 } ^ { k - 1 } } & { \text { in } \Omega _ { 1 } } \\
{ \text { on } \Gamma \times [0 , T] }
\end{array} \quad \left\{\begin{array}{rlll}
\mathcal{L}_{2} \mathbf{u}_{2}^{k} & =f, & \text { in } \Omega_{2} \times[0, T] \\
\mathbf{u}_{2}^{k}(z, 0) & =\mathbf{u}_{0}(z) & \text { in } \Omega_{2} \\
\mathcal{G}_{2} \mathbf{u}_{2}^{k} & =\mathcal{G}_{1} \mathbf{u}_{1}^{k-1} & \text { on } \Gamma \times[0, T]
\end{array}\right.\right.
$$

k is the iteration number
at convergence: $\mathcal{F}_{1} \mathbf{u}_{1}=\mathcal{F}_{2} \mathbf{u}_{2}$ and $\mathcal{G}_{1} \mathbf{u}_{1}=\mathcal{G}_{2} \mathbf{u}_{2}$ on $\Gamma \times[0, T]$
$\Rightarrow \mathcal{F}_{j}$ and \mathcal{G}_{j} are interface operators chosen to ensure that the coupled problem is well-posed (and possibly to accelerate convergence)

In the context of OA coupling :

- One single iteration is performed
- Interface operators chosen to satisfy flux continuity

When assimilating data, how to combine Schwarz iterations and minimisation iterations ?

Cost function and direct model

Monolithic spirit

$$
\text { let } \mathbf{x}_{0}=\mathbf{u}_{0}(z), z \in \Omega=\Omega_{1} \bigcup \Omega_{2}
$$

algo 1

$$
J\left(\mathbf{x}_{0}\right)=\left\|\mathbf{x}_{0}-\mathbf{x}^{b}\right\|_{\mathbf{B}}^{2}+\sum_{i}\left\|\mathbf{y}_{i}-H_{i}\left(M^{\star}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)\right)\right\|_{\mathbf{R}_{i}}^{2}
$$

$M^{\star}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)=$ converged solution of the Schwarz algorithm at time t_{i}, with IC \mathbf{x}_{0} and first guess $\mathbf{u}_{j}^{0}(\mathrm{j}=1,2)$

We need the adjoint of the coupled system and the iterative scheme

Cost function and direct model

Monolithic spirit

$$
\text { let } \mathbf{x}_{0}=\mathbf{u}_{0}(z), z \in \Omega=\Omega_{1} \bigcup \Omega_{2}
$$

algor 1

$$
J\left(\mathbf{x}_{0}\right)=\left\|\mathbf{x}_{0}-\mathbf{x}^{b}\right\|_{\mathbf{B}}^{2}+\sum_{i}\left\|\mathbf{y}_{i}-H_{i}\left(M^{\star}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)\right)\right\|_{\mathbf{R}_{i}}^{2}
$$

$M^{\star}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)=$ converged solution of the Schwartz algorithm at time t_{i}, with IC \mathbf{x}_{0} and first guess $\mathbf{u}_{j}^{0}(\mathrm{j}=1,2)$

Could the minimization iterations compensate for coupling iterations ?

$$
J\left(\mathbf{x}_{0}\right)=\left\|\mathbf{x}_{0}-\mathbf{x}^{b}\right\|_{\mathbf{B}}^{2}+\sum_{i}\left\|\mathbf{y}_{i}-H_{i}\left(M^{\dagger}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)\right)\right\|_{\mathbf{R}_{i}}^{2}
$$

$M^{\dagger}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)=$ truncated Schwarz algorithm (stopped after a fixed number of iterations)

We need the adjoint of the coupled system and the iterative scheme

Cost function and direct model

Partitioned spirit

$$
\text { Let } \mathbf{x}_{0}=\left(\mathbf{u}_{0}(z), \mathbf{u}_{1}^{0}(0, t), \mathbf{u}_{2}^{0}(0, t)\right)^{T}
$$

Additional term in the previous cost function to penalize the mismatch in the interface conditions

$$
J_{\mathrm{int}}=\left\|\mathcal{F}_{1} \mathbf{u}_{1}-\mathcal{F}_{2} \mathbf{u}_{2}\right\|_{\mathbf{F}}^{2}+\left\|\mathcal{G}_{1} \mathbf{u}_{1}-\mathcal{G}_{2} \mathbf{u}_{2}\right\|_{\mathbf{G}}^{2}
$$

algo 3

$$
J\left(\mathbf{x}_{0}\right)=\left\|\mathbf{x}_{0}-\mathbf{x}^{b}\right\|_{\mathbf{B}}^{2}+\sum_{i}\left\|\mathbf{y}_{i}-H_{i}\left(M^{\dagger}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)\right)\right\|_{\mathbf{R}_{i}}^{2}+\alpha J_{\mathrm{int}}
$$

$M^{\dagger}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)=$ truncated Schwarz algorithm (stopped after a fixed number of iterations)

Cost function and direct model

Partitioned spirit

$$
\text { Let } \mathbf{x}_{0}=\left(\mathbf{u}_{0}(z), \mathbf{u}_{1}^{0}(0, t), \mathbf{u}_{2}^{0}(0, t)\right)^{T}
$$

Additional term in the previous cost function to penalize the mismatch in the interface conditions

$$
J_{\mathrm{int}}=\left\|\mathcal{F}_{1} \mathbf{u}_{1}-\mathcal{F}_{2} \mathbf{u}_{2}\right\|_{\mathbf{F}}^{2}+\left\|\mathcal{G}_{1} \mathbf{u}_{1}-\mathcal{G}_{2} \mathbf{u}_{2}\right\|_{\mathbf{G}}^{2}
$$

algo 4

$$
J\left(\mathbf{x}_{0}\right)=\left\|\mathbf{x}_{0}-\mathbf{x}^{b}\right\|_{\mathbf{B}}^{2}+\sum_{i}\left\|\mathbf{y}_{i}-H_{i}\left(M^{0}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)\right)\right\|_{\mathbf{R}_{i}}^{2}+\alpha J_{\text {int }}
$$

$M^{0}\left(t_{i}, \mathbf{x}_{0}, \mathbf{u}_{j}^{0}\right)=$ solution after one single integration of each model taken separately

\llcorner
Remove the coupling iterations from the direct model

Algorithm	Penalization of the interface	Adjoint of the coupling	Strongly coupled solution	Number of Schwarz/ coupling iterations
Algo 1	NO	YES	YES	convergence
Algo 2	NO	YES	NO	truncated
Algo 3	YES	YES	NO	truncated
Algo 4	YES	NO	NO	1

Model problem

Linear problem
$\mathcal{L}_{j}:=\partial_{t}-\partial_{z}\left(\nu_{j} \partial_{z}\right)$
$\nu_{1} \neq \nu_{2}$
$\mathcal{F}_{j}=\mathrm{Id}$
$\mathcal{G}_{j}=\nu_{j} \partial_{z}$
Non-linear unstratified problem with

Coupled SCMs parameterizations

Numerical experiments

- Choose rhs to have an analytical solution
- Background obtained from biased initial state
- Observations are generated at the end of the time-window (in the interior, away from the interface)
- $\mathbf{R}=1, \mathbf{B}=100, \mathbf{F}=\mathbf{G}=10$

Algo 1	Normalized RMSE	\# of iterations after minimization
Algo 2	1	2
Algo 3	1.11	3
Algo 4	1.07	3

Figure 1. Evolution of J_{o} with respect to the total number of iteration model (direct and adjoint). each dot represents a minimization iteration

Conclusions and perspectives

- Conclude on this highly simplified linear problem

Pellerej, R., Vidard, A., Lemarié, F: Toward variational data assimilation for coupled models: first experiments on a diffusion problem, in preparation for CARl'16

- Develop increasingly complex testcases within OOPS
- add surface layer param to compute interface conditions
- add turbulent vertical mixing param

Conclusions and perspectives

- Conclude on this highly simplified linear problem

Pellerej, R., Vidard, A., Lemarié, F: Toward variational data assimilation for coupled models: first experiments on a diffusion problem, in preparation for CARl'16

- Develop increasingly complex testcases within OOPS
- add surface layer param to compute interface conditions
- add turbulent vertical mixing param

Thank you!

If you have any tricky question on variational data assimilation, please kindly contact arthur.vidard@inria.fr

