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Mrctic seasonal sea ice forecasts

» Hindcast: May 1 — September (5 months)
* In 4 coupled models: CanSIPS, CFSv2, CNRM-CM5.1 and EC-Earth2.3

» Predicted mean September Arctic seaice area
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%ources of Arctic sea ice predictability

= On seasonal-to-interannual time scales...

=Persistence (2-5 months for sea ice extent, change with the season)

=Advection of local sea ice anomalies by the mean Arctic circulation

sAtmosphere (link with NAO/AQO?)

=Ocean (main source beyond a few months)

"Re-emergence (based on persistence of another variable)

= Which one is relevant for the subseasonal time scale?

Guémas et al., 2014, QIRMS



Antarctic sea ice predictability

= Initial-value predictability of Antarctic sea ice in the CCSM 3
= Perfect model approach — 2-year ensemble integrations started January 1

~3 months
persistence
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Ice edge location = northernmost latitude
with SIC>15% (in the SH)

Re-emergence associated

- to ocean heat anomalies

e

Eastward advection of sea
ice anomaly

= Potential predictability
= Connections with Tropical Pacific variability

Holland et al.,

2013, GRL.



Mersistence: Arctic

» Arctic sea ice area: lagged correlation (daily data, detrended), 1990-2014
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Mersistence: Antarctic

» Antarctic seaice area: lagged correlation (daily data, detrended), 1990-2014
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Persistence of sea ice thickness

= Arctic sea ice thickness: e-folding time in reanalyses

» ORAP5 (ECMWF), G2V3
(Glorys2v3, Mercator Océan),
ECDA (GFDL), CNRM: global
ocean-sea ice reanalyses

PIOMAS

» PIOMAS (UW): regional ocean-
sea ice reanalysis

— No long-term observations

— Signal not consistent among different
estimates (modelling+DA issues)

= Persistence on longer time scales

months
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Chevallier et al., 2015, CLIMDYN Special issue ‘ocean reanalyses’



Sea ice thickness vs sea ice area

» CNRM-CM3.3 400-year control simulation (PI)
» Potential predictors of the Arctic sea ice area
» Based on the ice thickness distribution / ice thickness categories
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— Role of the ice thickness distribution on seasonal time scale
— Preconditioning of September sea ice anomaly by thick ice anomaly in March
= Not necessary better than persistence on shorter time scale...

s

Chevallier and Salas y Mélia, 2012, JCLIM



Madiative processes: role of melt ponds -

» Statistical predictions of the Arctic September sea ice extent
» Using model or observational estimates of melt pond fraction

Model: Schroder et al
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— Melt ponds over Arctic sea ice in May-June is a
promising predictor of Sep sea ice extent (R=-0.8)

— Predictor is a model estimate

MODIS: Liu et al
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— Strong relationship as melt pond fraction is
integrated over May-June

— Persistent strong relationship only occuring
after late July

Liu et al., 2015 ERL
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CNRM S2S system

* Hindcast (1993-2014)

® 2 start dates per month: 15t and 15t
= 60-day forecasts

= 15 members

= Stochastic dynamics in ARPEGE

= Dynamic/thermodynamic multi-
category sea ice model

OASISv3 | 24

® |nitial conditions:

v" atm/land: ERA-Interim
v  oce/sea ice: Mercator Océan
PSY2G2V3 upscaled

Sea Ice
GELATO v5

Voldoire et al., 2013, CLIMDYN = Contributes to the S2S database!

Batté and Déqué, 2012, GRL
Chevallier et al., 2013, JCLIM

7,-seaso'nal to seasonal predlctlons with the CNRM-CM global coupled model*

by Lauriane Batté et aI



= Seaice in CNRM S2S

= Spread (STD) of 15-member ensemble forecasts of Arctic seaice area
» Compared to natural variability in the observations: potential predictability
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= Potential predictability for 2 months in Feb, Mar, Apr, Jul, Aug, Sep



wea ice in CNRM S2S

» Seaice area
» Anomaly correlation (detrended), reference: NSIDC (NasaTeam), 1993-2013
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= Better predictive skill in spring, summer, early fall for pan-Arctic sea ice area
= Regional contrasts: predictive skill in winter/spring and fall in the Barents-Kara seas



Seaice in CNRM S2S

» September pan-Arctic sea ice extent

September monthly average September monthly detrended
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= Reasonable skill with and without the trend
= Not significantly better than persistence of July anomalies
= Is it interesting?




wea ice in CNRM S2S

» Contingency tables
» Event: ice presence (sea ice concentration > 15%)
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= Both spatial and integrated information
= Relevant for end-users (shipping)
= Sensitivity to the threshold (in obs)
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IPCNRM S25 skill in the Arctic

= Anomaly correlation 2m-temperature, reference: ERA-Interim, DJF/JJA 1993-2014
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%ea Ice Initialization In seasonal forecasts

» CNRM-CM5, hindcast: May 1 — September (5 months)
» Impact of sea ice initialization on seasonal forecasts
Init: realistic sea ice initialization

Clim: climatological sea ice initialization
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= Sea ice initialization improves sea ice forecasts (not in winter...)
= JJA forecasts are not significantly improved

= Same with EC-Earthv2.3

= Modelling + Initialization issues

PRa—

Guémas, Chevallier et al., 2015, submitted



%ea iIce models in medium-range forecasts

= Impact of a dynamical sea ice model on coupled forecasts over the Beaufort Sea
» 5-day forecasts with GEM (10km) — NEMO-CICE (1/4°)
= Difference dynamical vs persistent sea ice

Difference in ice fraction (%) Difference in 2m temperature (°C)
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= Clear impact of sea ice dynamics on atmospheric simulation
= Modelling issues: air-ice coupling, high resolution sea ice features (leads)




%ea ice/Arctic processes In S2S forecasts

= ECMWEF T159L60, prescribed SST/sea ice
= Relaxation of u, v, T, log(p) towards ERA-40 north of 70°N and below 300hPa (ARC)
= Comparison with experiment with relaxation in the tropical belt (20°S-20°N) (TRP)

Day 6:10‘&

Relative reduction (in %) of the RMSE of 500hPa
geopotential height due to Arctic nudging.
70 Winter forecasts 1980/81-2000/01

90%
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— Potential of improvement of S2S forecasts
-90 assuming a perfect representation of Arctic
processes

Jung et al., 2014, GRL



mutlines

Sources of sea ice subseasonal predictability
Sea ice skill in CNRM S2S

Sea ice in S2S prediction systems

Example of case study with seaice




Case study: September 2007 (1)
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= Drivers of the September sea ice anomaly?
= Atmospheric response to the September sea ice anomaly?




= 5-month May 1 hindcasts with CanSIPS, CFS, CNRM-CM, EC — AUG 1
» CNRM-CM S2S initialized Aug 1, Aug 15 and Sep 1 2
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wase study: September 2007 (3)

= CNRM S2S hindcast initialized on 1 October 2007
» Anomaly relative to 1993-2013
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%ummary

This is the end!




wummary

v For end-users, the subseasonal time scales is the relevant time scale.

v Persistence is the main source of predictability at subseasonal time scales for sea ice area.
v' Longer persistence of sea ice area in the summer and late winter in both hemispheres.
v' Sea ice thickness potentially plays a role for longer time scales (still important for users!)

v CNRM S2S system has some reasonable skill in the summer and spring for pan-Arctic sea ice
area. Predictability is limited in transition seasons.
v" There are regional contrasts: better skill in winter-spring in the MIZ.

v" Including dynamical sea ice in S2S systems has potentially a strong impact on atmospheric
predictions inside and outside the polar regions.
v' Coupled air-ice processes as potential sources of predictability (fluxes, leads, melt ponds)
— well represented in models?

v' Case studies (as summer-fall 2007) could address:
= Drivers of sea ice anomalies (sea ice = predictand)
» Response to sea ice anomalies (sea ice = predictor)

= Connections with the Polar Prediction Project (WWRP) and the Year Of Polar
Prediction (2017-2019): improve hourly-to-seasonal environmental forecasts in the
Polar regions (+ linkages)
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