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Sea ice 101

Sice=1-10 PSU

Soce=34 PSU

80% 6%

MARCH SEPTEMBER

Sea ice concentration (areal fraction, 0-1), mean 1993-2014



Motivations

USERS

CLIMATE CHANGE

LINKAGES

Initial conditions problem Boundary conditions problem



Arctic seasonal sea ice forecasts

 Hindcast: May 1 ➙ September (5 months)

 In 4 coupled models: CanSIPS, CFSv2, CNRM-CM5.1 and EC-Earth2.3

 Predicted mean September Arctic sea ice area

Guémas et al., 2014, QJRMS

Tietsche et al., 2014, GRL

➡ Large differences between coupled 
systems

➡ Not necessary better than statistical 
models (Sea Ice Outlook)

➡ Lot of works to quantify the role of
initialization 
model physics / parameters 
chaotic atmospheric fluctuations

➡ Ex: idealized model simulations (“perfect 
model”): APPOSITE gang
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Sources of Arctic sea ice predictability

Persistence (2-5 months for sea ice extent, change with the season) 

Advection of local sea ice anomalies by the mean Arctic circulation

Atmosphere (link with NAO/AO?)

Ocean (main source beyond a few months)

Re-emergence (based on persistence of another variable)

Guémas et al., 2014, QJRMS

 On seasonal-to-interannual time scales… 

➡ Which one is relevant for the subseasonal time scale?



Antarctic sea ice predictability

 Initial‐value predictability of Antarctic sea ice in the CCSM 3
 Perfect model approach – 2-year ensemble integrations started January 1

Chen and Yuan, 2004, JCLIM

Holland et al., 2013, GRL

➡ Potential predictability 
➡ Connections with Tropical Pacific variability

Ice edge location = northernmost latitude 

with SIC>15% (in the SH)

∼3 months

persistence

Eastward advection of sea
ice anomaly

Re-emergence associated
to ocean heat anomalies



Persistence: Arctic

 Arctic sea ice area: lagged correlation (daily data, detrended), 1990-2014 

Data: NASATEAM sea ice concentration (NSIDC)
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Correlation

Mean annual cycle

➡ Persistence changes with time of the 
year

➡ Longest e-folding times during the 
summer (JJAS) and in winter (FM)

➡ Lowest persistence when sea ice area 
changes the most (May, October) and in 
December-January



Persistence: Antarctic
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 Antarctic sea ice area: lagged correlation (daily data, detrended), 1990-2014 

Data: NASATEAM sea ice concentration (NSIDC)

Correlation

Mean annual cycle

➡ Longest e-folding times during the 
summer (DJFMA)

➡ Lower the rest of the year

➡ Re-emergence around the annual 
maximum (September)



Persistence of sea ice thickness

Blanchard-Wrigglesworth and Bitz, 2014, JCLIM

Chevallier et al., 2015, CLIMDYN Special issue ‘ocean reanalyses’

months

 Arctic sea ice thickness: e-folding time in reanalyses

➡ No long-term observations

➡ Signal not consistent among different 
estimates (modelling+DA issues)

➡ Persistence on longer time scales

 ORAP5 (ECMWF), G2V3 

(Glorys2v3, Mercator Océan), 

ECDA (GFDL), CNRM: global 

ocean-sea ice reanalyses

 PIOMAS (UW): regional ocean-

sea ice reanalysis



Sea ice thickness vs sea ice area

Chevallier and Salas y Mélia, 2012, JCLIM

 CNRM-CM3.3 400-year control simulation (PI)

 Potential predictors of the Arctic sea ice area

 Based on the ice thickness distribution / ice thickness categories

➡ Role of the ice thickness distribution on seasonal time scale
➡ Preconditioning of September sea ice anomaly by thick ice anomaly in March
➡ Not necessary better than persistence on shorter time scale…
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Radiative processes: role of melt ponds

 Statistical predictions of the Arctic September sea ice extent

 Using model or observational estimates of melt pond fraction

Schröder et al., 2014, NCC

Liu et al., 2015, ERL

➡ Melt ponds over Arctic sea ice in May-June is a 
promising predictor of Sep sea ice extent (R=-0.8)

➡ Predictor is a model estimate

Model: Schröder et al
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MODIS: Liu et al

➡ Strong relationship as melt pond fraction is 
integrated over May-June

➡ Persistent strong relationship only occuring
after late July
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CNRM S2S system

 Hindcast (1993-2014) 
 2 start dates per month: 1st and 15th

 60-day forecasts
 15 members
 Stochastic dynamics in ARPEGE

 Dynamic/thermodynamic multi-
category sea ice model

 Initial conditions: 
 atm/land: ERA-Interim
 oce/sea ice: Mercator Océan
PSY2G2V3 upscaled

➡ Poster “Sub-seasonal to seasonal predictions with the CNRM-CM global coupled model“ 

by Lauriane Batté et al.

Voldoire et al., 2013, CLIMDYN
Batté and Déqué, 2012, GRL
Chevallier et al., 2013, JCLIM

➡ Contributes to the S2S database! 



Sea ice in CNRM S2S

 Spread (STD) of 15-member ensemble forecasts of Arctic sea ice area

 Compared to natural variability in the observations: potential predictability

➡ Potential predictability for 2 months in Feb, Mar, Apr, Jul, Aug, Sep

STD obs

1 curve = 
1 year

million km2



Sea ice in CNRM S2S

 Sea ice area

 Anomaly correlation (detrended), reference: NSIDC (NasaTeam), 1993-2013

➡ Better predictive skill in spring, summer, early fall for pan-Arctic sea ice area
➡ Regional contrasts: predictive skill in winter/spring and fall in the Barents-Kara seas

Total Arctic

Lead (days)

Barents-Kara seas



Sea ice in CNRM S2S

 September pan-Arctic sea ice extent

➡ Reasonable skill with and without the trend
➡ Not significantly better than persistence of July anomalies
➡ Is it interesting?



Sea ice in CNRM S2S

 Contingency tables

 Event: ice presence (sea ice concentration > 15%)

➡ Both spatial and integrated information
➡ Relevant for end-users (shipping) 
➡ Sensitivity to the threshold (in obs)

September

July
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CNRM S2S skill in the Arctic

week 2

DJF

 Anomaly correlation 2m-temperature, reference: ERA-Interim, DJF/JJA 1993-2014

JJA

week 3 week 4



Sea ice initialization in seasonal forecasts

Detrended ACC Arctic SIE RMSE Arctic SIE Ratio RMSE Init/Clim (JJA) T2m

 CNRM-CM5, hindcast: May 1 ➙ September (5 months)

 Impact of sea ice initialization on seasonal forecasts

Init: realistic sea ice initialization

Clim: climatological sea ice initialization

EU-FP7-SPECS

Guémas, Chevallier et al., 2015, submitted
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➡ Sea ice initialization improves sea ice forecasts (not in winter…)
➡ JJA forecasts are not significantly improved
➡ Same with EC-Earthv2.3
➡ Modelling + Initialization issues



Sea ice models in medium-range forecasts

Difference in ice fraction (%) Difference in 2m temperature (°C)

Courtesy Greg Smith (Environment Canada)

 Impact of a dynamical sea ice model on coupled forecasts over the Beaufort Sea

 5-day forecasts with GEM (10km) – NEMO-CICE (1/4°)

 Difference dynamical vs persistent sea ice

➡ Clear impact of sea ice dynamics on atmospheric simulation
➡ Modelling issues: air-ice coupling, high resolution sea ice features (leads)



Sea ice/Arctic processes in S2S forecasts

Day 1-5 Day 6-10

Day 11-30

Negative values = ARC > TRP

Day 11-30

Relative reduction (in %) of the RMSE of 500hPa 
geopotential height due to Arctic nudging.
Winter forecasts 1980/81-2000/01

Jung et al., 2014, GRL

➡ Potential of improvement of S2S forecasts 
assuming a perfect representation of Arctic 
processes

 ECMWF T159L60, prescribed SST/sea ice

 Relaxation of u, v, T, log(p) towards ERA-40 north of 70°N and below 300hPa (ARC)

 Comparison with experiment with relaxation in the tropical belt (20°S-20°N) (TRP)
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Case study: September 2007 (1)

SEPTEMBER 1979-2000 SEPTEMBER 2007

➡ Drivers of the September sea ice anomaly?
➡ Atmospheric response to the September sea ice anomaly?



Case study: September 2007 (2)

 5-month May 1 hindcasts with CanSIPS, CFS, CNRM-CM, EC-Earth

 CNRM-CM S2S initialized Aug 1, Aug 15 and Sep 1

➡ Seasonal: The more information, the better the forecast
➡ S2S: AUG 1 is already a good forecast!

MAY 1

AUG 1

CNRM-CM Seasonal forecasts



Case study: September 2007 (3)

Kumar et al., 2010, GRL

Orsolini et al., 2011, CLIMDYN
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 CNRM S2S hindcast initialized on 1 October 2007

 Anomaly relative to 1993-2013 

T2m (°C)

Average over the latitude band 75°N-85°N



Summary

This is the end!



Summary

 For end-users, the subseasonal time scales is the relevant time scale.

 Persistence is the main source of predictability at subseasonal time scales for sea ice area.

 Longer persistence of sea ice area in the summer and late winter in both hemispheres.

 Sea ice thickness potentially plays a role for longer time scales (still important for users!)

 CNRM S2S system has some reasonable skill in the summer and spring for pan-Arctic sea ice

area. Predictability is limited in transition seasons.

 There are regional contrasts: better skill in winter-spring in the MIZ.

 Including dynamical sea ice in S2S systems has potentially a strong impact on atmospheric

predictions inside and outside the polar regions.

 Coupled air-ice processes as potential sources of predictability (fluxes, leads, melt ponds)

➙ well represented in models?

 Case studies (as summer-fall 2007) could address:
 Drivers of sea ice anomalies (sea ice = predictand)

 Response to sea ice anomalies (sea ice = predictor)

➡ Connections with the Polar Prediction Project (WWRP) and the Year Of Polar 
Prediction (2017-2019): improve hourly-to-seasonal environmental forecasts in the 
Polar regions (+ linkages)



Thank you for your attention

Workshop on subseasonal predictability

2-5 November 2015, ECMWF, Reading

Matthieu Chevallier (CNRM-GAME, Météo France)

matthieu.chevallier@meteo.fr

mailto:Matthieu.chevallier@meteo.fr

