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Normallzed GPH anomoly (65°N 90°N)
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Normalized GPH anomaly (65°N—90°N)
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British Snow Storms



Observed Average Surface Pressure Anomalies (hPa)

60 days following weak stratospheric winds 60 days following strong stratospheric winds
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From Baldwin and Dunkerton., 200




Surface temperature anomalies

Days 1-60 following
stratospheric anomalies ENSO (warm-cold)

From Thompson et al,, J. Climate 2002



Observed Average Surface Pressure Anomalies (hPa)

Storm Tracks
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Fig. 5. Average latitudes of surface cyclones
(defined as closed low-pressure centers less
than 1000 hPa) in the Atlantic and Pacific sec-
tors for the 1080 days during weak vortex
regimes (thick red lines) and the 1800 days
during strong vortex regimes (thick blue lines).
The thin lines indicate the lowest latitude at
which a cyclone frequency of one per two
weeks is expected. The data span 1961-1998,
and each data point represents the average of a
15° band in longitude.

From Baldwin and Dunkerton, 200



Weather Extremes Related to
Stratospheric Variability

® Severe cold weather at high latitudes is more common during
weak vortex events.

® Winter weather extremes (low temperatures, snow, etc.) are
much more common during weak vortex events.
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- ® Atlantic blocking occurs almost exclusively during weak vortex
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Baldwin and Dunkerton (JGR 1999) suggested that
the redistribution of mass in the stratosphere, in
response to changes in wave driving, may be
sufficient to influence the surface pressure
significantly, consistent with the theoretical results
of Haynes and Shepherd (1989).
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Ambaum and Hoskins (JClim 2002) used “PV
thinking” to explain how stratospheric PV
anomalies affect surface pressure.



Zonal-Mean Wind
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Anomalous wave drag leads to variations in vortex strength



FIiG. 4. Schematic of the bending of isentropic surfaces (labeled
0,, 6,, and 6,) toward a positive potential vorticity anomaly. The
arrows represent winds associated with the potential vorticity anom-
aly, becoming weaker away from the anomaly.

Diagram from Ambaum and Hoskins J Climate (2002).



Polar cap “PV600K Index” ~20-25 hPa

Correlatiqn between JFM PV 600K Index anq Zona]-Mean PV Anomalies, JFM ]
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Composite of 24 negative events: PV at 600K
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Composite of 24 negative events: PV at Equivalent Lat 70N
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Composite of 23 positive events: PV at Equivalent Lat 70N
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FIiG. 4. Schematic of the bending of isentropic surfaces (labeled
0,, 6,, and 6,) toward a positive potential vorticity anomaly. The
arrows represent winds associated with the potential vorticity anom-
aly, becoming weaker away from the anomaly.

Diagram from Ambaum and Hoskins J Climate (2002).



Pressure Anomaly, 7 hPa between ticks

Composite Anomalous Pressure, 33 Weak Vortex events
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Correlation during winter (JFM) between the 600K PV index and zonal-mean temperature.
The JFM daily correlation between PV530 and polar cap tropopause T anomalies is 0.90.

From Baldwin and Birner, in prep.



Effects on baroclinic eddies
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Anomalous Baroclinicity (slope of isentropic surfaces)
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Observed Average Surface Pressure Anomalies (hPa)

60 days following weak stratospheric winds 60 days following strong stratospheric winds

From Baldwin and Dunkerton., 200



Observed Average Surface Pressure Anomalies (hPa)

60 days following weak stratospheric winds

From Baldwin and Dunkerton., 200 |
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Movement of mass by the wave-driven pump

Polar Cap Pressure Anomaly
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Diagnostic for observations or models

Regression between PV600K index and Polar Cap p’

ERA-40 observations
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