

World Meteorological Organization

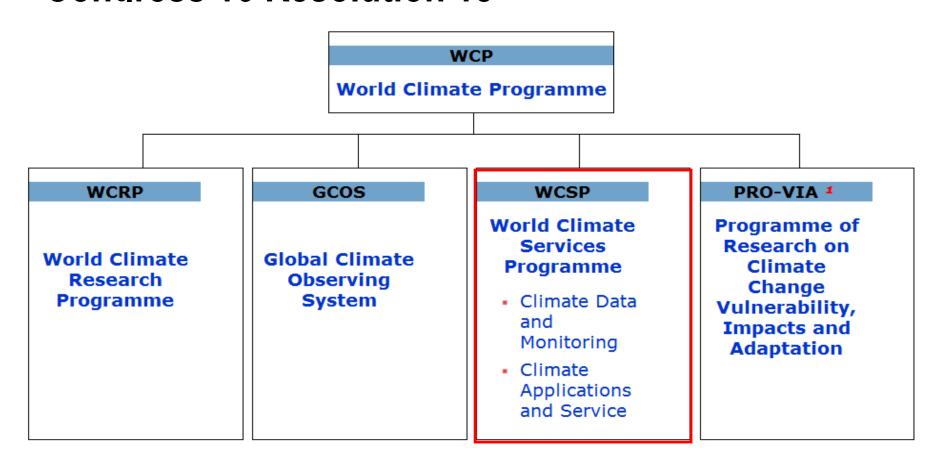
Weather • Climate • Water

WMO Climate Monitoring Activities

Omar Baddour

Data Management Applications Division

Observing and Information System Department


Obaddour@wmo.int

CONTENT

- 1. Brief introduction on WCP and WCSP
- 2. Purpose of WMO Climate Monitoring activities
- New initiatives
- 4. Challenges and Recommendations

World Climate Programme new Structure Congress 16 Resolution 18

PROVIA became the fourth component of the WCP, by Resolution 4.3(2)/1 of EC-65.

Purpose of the WMO Climate Monitoring

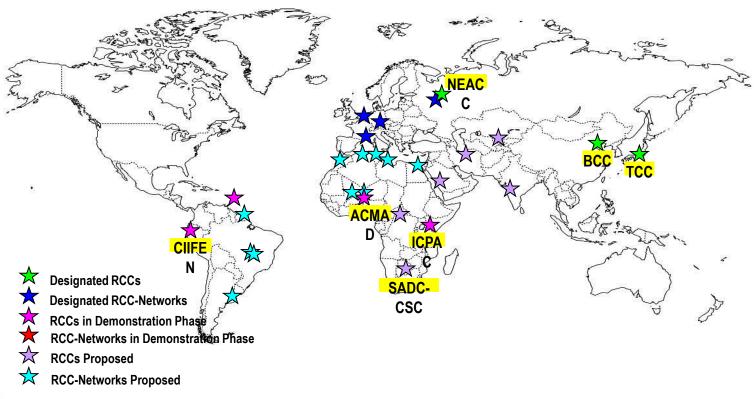
- 1. Provide a platform for collaboration for developing data sets for monitoring the climate system and assessing Climate change
- 2. Promote using best practices for addressing Climate Metadata, QC, and Homogenisation of the data
- Promote the development and use of global and regional infrastructure to help National Meteorological Services in producing climate information, climate reports and climate advisories for their users
- 4. Training and Capacity Buildling; in Data Rescue, Data Management, Climate Watch, Climate indices, etc...
- 5. Develop showcases on Global and Regional Climate reports

1. Platform for collaboration on Data sets

- 1. Facilitate the provision and exchange of monthly Data sets such as CLIMAT reports.
- 1.Coordination of the submission of World Weather Records on annual basis
- 2.Guidance on producing Climate indices suitable for assessing climate change nationally and globally (ETCCDI)
- 3. Foster collaboration amongst Global Data centres and National Meteorological Sevices for filling data gaps in the historical records (Data Rescue)

Guidelines on submission of WWRs

							V	orld Wea	ther Reco	rds						
								ata Shee	t, 1991-20	00						
	ader Record			3 14 15 16 17 18												
-		B 0		D D	19 20 21 22 23	24 29 26 21 20	E E	34 39 36 31 36	39 40 41 42 43	44 45 46 41 40	49 90 91 92 93	F F	99 60 61 62 63	64 65 66 61 66	G G	H 15 16 11 16
Blan		• Latit		Langitudo		Cas	ntry Namo (Engli	irh)			Ste	tion Namo (Engli	rh)	St.	ation Hoight Bare	amotor Hoight
	54511	1 39.481	N	116.28	E CHINA					BEJING					31	313
D-4																
	ta Record		4 42 4	3 14	15	16	17	18	19	20	21	22	23	24	25	26
-			1 12 1	2 14 J	19	16	- "	10	19 K	20	- 21		- 23	24	29	
Blan		· Y.		January	Fobruary	March	April	May	June	July	Augurt	September	October	Navember	Docombor	Annual
	54511		991	10221	10194	10170	10089	10051	9983	9956	10019	10079	10124	10187	10220	10108
	54511 54511		992 993	10219 10237	10164 10182	10173 10149	10051 10086	10049	10009 9971	9985 9971	10029 10010	10071 10072	10167 10158	10195 10200	10206 10222	10110
	54511		994	10181	10182	10167	10062	10001	9989	9966	10016	10070	10152	10191	10235	10101
	54511		995	10211	10189	10122	10063	10028	9986	9976	10020	10088	10144	10159	10241	10103
	54511 54511		996 997	10213 10213	10218 10197	10146 10160	10099 10131	10052 10042	9982 10027	9990 10010	10037 10030	10077 10126	10139 10160	10193 10214	10174	10110 10129
	54511		998	10213	10197	10178	10098	10042	10027	9988	10030	10026	10150	10214	10242	10125
	54511	2 1	999	10215	10212	10144	10100	10063	10017	10003	10038	10098	10169	10197	10245	10125
	54511 54511		000	10274	10218 10197	10141 10155	10073 10086	10045 10045	10018 9999	9984 9983	10040 10026	10107 10087	10175 10154	10227 10194	10218 10224	10127 10114
			010 3	1 10223 2 10242	10197	10174	10100	10045	10012	9983	10026	10105	10154	10194	10224	10130
	0,011	<u> </u>	0.01	. 10272	IOLLO	10.114	10.00	10001	10012	000.	.000.	10.00	10.01	102.11	10200	
1	2 3 4 5 6 7	8 9 10 1	1 12 1	3 14	15	16	17	18	19	20	21	22	23	24	25	26
	A		١,	,					K							
Blan	k WMO Number 54511	· Yo	or 1	January 10228	February 10218	March 10123	April 10111	May 10031	June 9998	July 10000	August 10056	Soptombor 10124	0atebor 10166	Navember 10206	December 10284	Annual 10129
	54511		002	10227	10205	10123	10094	10031	10020	9997	10044	10124	10161	10200	10266	10123
	54511		003	10238	10209	10190	10101	10070	10008	1004	10040	10101	10158	10227	10247	10133
	54511 54511		004	10238 10234	10168 10249	10152 10181	10083 10077	10041 10049	10039 9979	1001	10045 10036	10107 10119	10185 10174	10204 10170	10248 10263	10126 10128
	54511 54511		300	10234	10249	10129	10077	10049	9979	10002	10036	10119	10174	10170	10263	10128
	54511		007	10263	10178	10159	10114	10024	10022	9998	10035	10103	10179	10224	10223	10126
	54511		800	10283	10246	10150	10090	10032	10021	9999	10030	10100	10150	10195	10213	10126
	54511 54511		010	10239 10236	10176 10195	10155 10178	10104 10132	10061 10039	9972 10039	9991 10000	10045 10041	10099 10103	10132 10170	10230 10171	10219 10163	10119 10122
	54511		010	1 10274	10208	10154	10098	10049	10000	9998	10041	10110	10163	10201	10238	10126
	54511		010 2	2 10242	10220	10174	10100	10057	10012	9997	10037	10105	10167	10214	10238	10130
1 1	2 3 4 5 6 7	8 9 10 1			15	16	17	18	19	20	21	22	23	24	25	26
		\perp	(Column Des												
			H		rological Org. Designator				n Station Pr	essure (hP	a) 3=Mear	Sea Level	Pressure (hPa)		
						4=Mean	Air Tempe	rature (deg	C), 5=Tota	I Amount o	f Precipita	tion (mm).				
			\perp	Latitude, For					Air Tempe						erature (de	·g C)
			i là), Ministration 200 to 180), Min							
			E	Country Nam	ne (in English)											
-			F	Station Name												
			H	a Height of Star H Height of Bar	ition. Format			imal implied)								
			1	Year of Data.												
			Ī						Decadal Avera							
			+ I'	Monthly/Anni Precinita					Pa (decimal im to tenths of a n					nthly values.	+	
			± 1						0 and < 0.05 m							
				+												
		+++	+	+												
			-	+												


2. Use of best Practices, QC, HOM, Indices

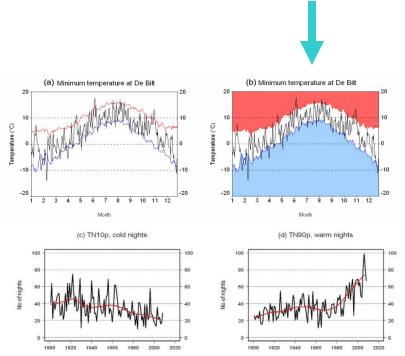
- 1.Expert Team on Climate Data Management
- 2. Task Team on Data Homogenisation
- 3. Joint CCI/Clivar/JCOMM Expert Team on Climate Change Detection and Indices, 27 indices based on RR and T*, RCLIMDEX RH Test.
- 4.Support Regional initiatives on Data Rescue and homogenisation (MEDARE, INDARE)
- 5. Guidelines on Metadata and Data Homogenisation (WCDMP No.53)

3. Infrastrcuture: Regional Climate Centre

RCCs are formally designated by WMO to achieve certain climate functions and products, i.e Climate data Climate diagnostics and climate predictions

Capacity Development Data Rescue and QC, Homomogenisation and Climate Change indices and

Data Rescue (DARE) is an integral part of the World Climate Services Program with a long term goal of rescuing and digitizing climate records. A focus is made on those records at risk of loss. DARE enables climate science and climate services by making readily available long and high quality climate datasets needed for:

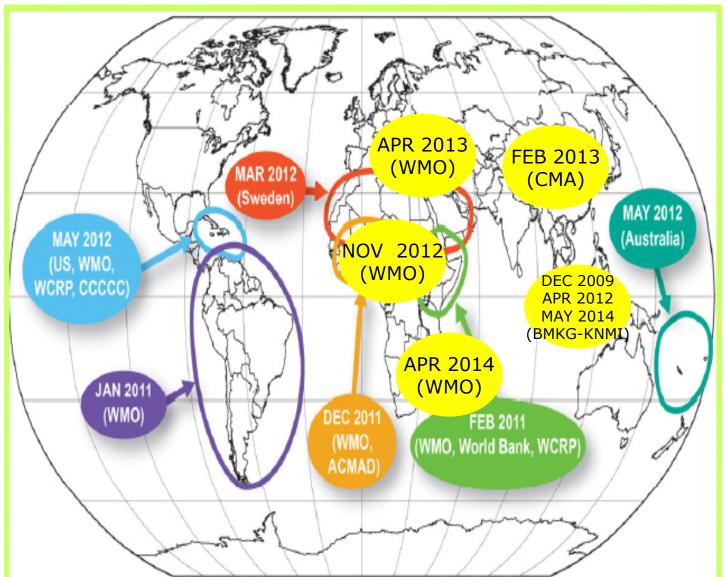

Progressing science

- Climate variability and climate change assessment,
- Modeling,
- Calibration of Satellite data

Sector Applications and Risk Management

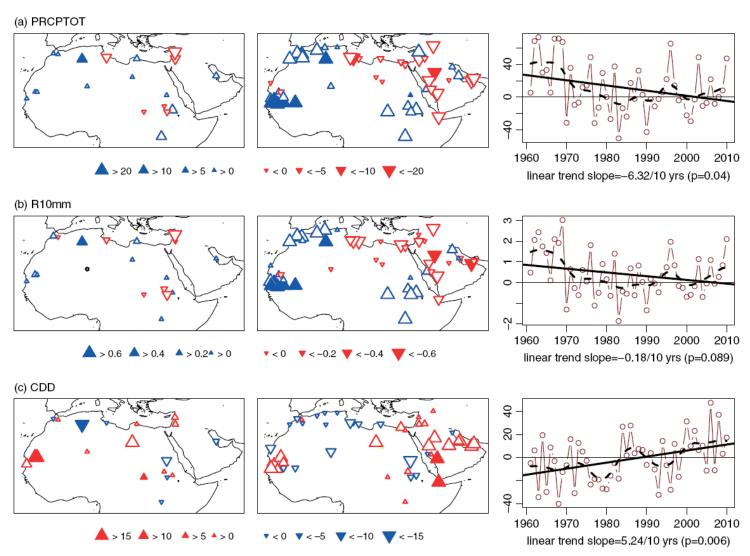
- Agriculture, Water Resources, Energy, Insurance
- NDisaster Risk Reduction

Climate Early Warning

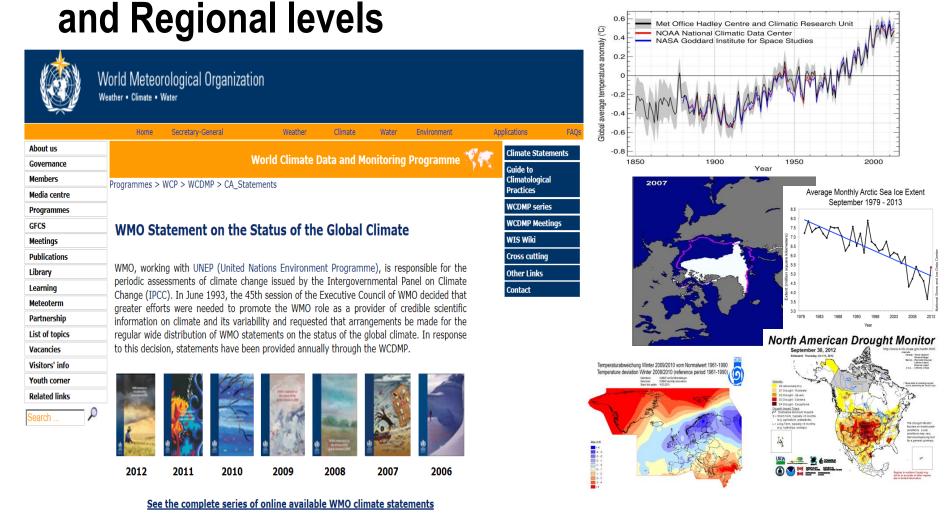

Climate Indices

Guided by CCI/WCRP-Clivar/JCOMM Expert Team on Climate Change Detection and Indices

- 27 climate indices have been developed and being used for analyzing climate extremes related to temperature and precipitations
- These workshops are designed to address the specific needs in climate change detection and indices, provide training to national experts.
- Size varies according the regions from 10 to 20 Participants
- 4 to 5 days: A combination of seminars and hands-on data analysis.
- These workshops resulted usually in a scientific paper in the peer-reviewed journal, like International Journal of Climatology of the Royal Meteorological Society


ETCCDI Regional Workshops 2011 - 2012

Zhang et al., WIREs Clim Change, 2011



Climate Indices Example from Casablanca workshop

Promote Climate Monitoring Show cases at Global

New Initiatives: Climate Data Management Specifications Commission fior Climatology ET-CDMS

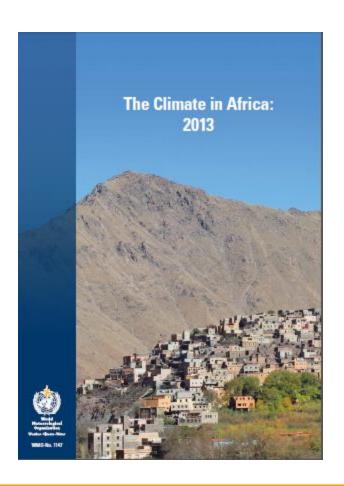
Climate Data Management System Specifications

- CDMS Governance
- Time Series Climate Data
- Climate Data Management
- Climate Data Analysis
- Climate Data Presentation
- Climate Data Delivery Services
- Core IT Infrastructure

New Initiatives: International Data Rescue Portal (I-DARE) Commission fior Climatology ET-Data Rescue

→ Single entry portal to data rescue worldwide

- Inventory of to-be-rescued and rescued data
- Stimulation of best practices and knowlegde sharing
- Promotion of applications using rescued data
- Stimulation of **new** data rescue projects
- Converge contents of new and existing DARE WebSites
- Avoid duplication of data rescue activities
- An information gate for donors
- Promote citizen science to enhance DARE activities


A white paper on I-DARE (endorsed by CCI-16) can be found at: http://www.wmo.int/pages/prog/wcp/wcdmp/documents/IDARE_wcdmp83.pd

Climate Statement on the Status of Climate in Africa, Annual basis WMO-ACMAD-Regional Association for Africa

Contents

Foreword					 	٠.	 	 	 3
Climate assessment:	key conti	inental	featu	res	 		 	 	 4
Temperature					 		 	 	 4
Precipitation					 		 	 	 . 5
Climate assessment:	subregio	nal fea	tures.		 		 	 	 7
Southern Africa					 		 	 	 . 7
Temperature					 		 	 	 . 7
Precipitation					 		 	 	 . 7
South-West Indian	Ocean Isla	nd Cou	ntries		 		 	 	 . 9
Temperature					 		 	 	 . 9
Precipitation					 		 	 	 . 9
Central Africa					 		 	 	 10
Temperature					 		 	 	 10
Precipitation					 		 	 	 10
Eastern Africa					 		 	 	 10
Temperature					 		 ٠.	 	 .11
Precipitation					 		 ٠.	 	 .11
Western Africa					 		 ٠.	 	 .11
Temperature					 		 ٠.	 	 .11
Precipitation					 		 ٠.	 	 .12
Northern Africa					 ٠.		 ٠.	 	 .13
Temperature					 		 ٠.	 	 .13
Precipitation					 		 ٠.	 	 .14
Extreme weather and	d climate	events	in 201	3 .	 		 	 	 16
Floods and heavy	y precipita	ition			 		 	 	 .17
Tropical cyclones	s and wind	storms			 		 	 	 22
Droughts, heat w	vaves and	fires			 		 	 	 24
Other extreme ev	vents				 		 	 	 26

Challenges

- Data availability and data quality
- Inconsistency in producing national climate reports
- Difficulties in monitoring climate with regularity in the regions, i.e Africa, South America, South Asia. No regional homogenized data sets
- A large need for enhacing capacity in Developing and least developed countries and lack of sufficient resources

Recommendations

- Develop conherent and consistent methodology for submission on national climate monitoring products (Commission for Climatology)
- Work on Regional homogenized climate data sets
- Develop simple tools and software that can be used by NMHSs in producing regular and timely monitoring bulletins at national level
- Promote internet web Platform to share and make use of global data for producing climate information in easy manner.
- Guide Countries and RCCs in providing additional background information, i.e reference period and uncertainty estimates
- •Foster partnership and collaboration to meet the large need in capacity development; training, Software, workshops, etc.

World Meteorological Organization

Weather • Climate • Water

Thank You

Contacts
http://www.wmo.int/pages/prog/wcp/wcdmp/index_en.php
Climate Data and applications division

Obaddour@wmo.int