The Metrology of Earth Observation

Fidelity and Uncertainty in Climate Data Records from Earth Observations

www.fiduceo.eu

Chris Merchant University of Reading, UK Jon Mittaz University of Reading and National Physical Laboratory, UK Emma Woolliams National Physical Laboratory, UK Rhona Phipps *University of Reading, UK*

Metrology is the science of measurement, and delivers the references on which all quantitative natural science is based. The H2020 project, FIDUCEO, will apply the

insights and techniques of metrology systematically to Earth Observation, to demonstrate the trustworthiness of satellite-derived climate data records.

Well-characterised uncertainties are crucial if Climate Data Records (CDRs) are to be properly exploited. Our understanding of CDR uncertainties is, however, currently limited.

For example, how trustworthy is the uncertainty on a given measurement of a climate variable? If we compare a measurement now with one obtained a few decades earlier, how uncertain is the apparent change? To what extent do instrumental and multi-mission (in)stability limit the conclusions that can be drawn about climatic trends?

The FIDUCEO project will adapt insights and techniques from metrology to deliver trustworthy, traceable uncertainty information. This will be demonstrated across microwave, infra-red and visible domains.

DATASET	NATURE	POSSIBLE USES
AVHRR FCDR	Harmonised infra-red radiances and best available reflectance radiances, 1982 - 2016	SST, LSWT , aerosol , LST, phenology, cloud properties, surface reflectance
HIRS FCDR	Harmonised infra-red radiances, 1982 - 2016	Atmospheric humidity, NWP re-analysis, stratospheric aerosol
MW Sounder FCDR	Harmonised microwave BTs for AMSU-B and equivalent channels, 1992 – 2016	Atmospheric humidity, NWP re-analysis
Meteosat VIS FCDR	Improved visible spectral response functions and radiance 1982 to 2016	Albedo, aerosol, NWP re- analysis, cloud, wind motion vectors,

New uncertainty-quantified Fundamental Climate Data Records

det. noise, digitisation ...

Rigour in considering every effect that causes error is demanding, but necessary for CDRs, because different errors dominate at the many different scales on which data are analysed for climate science.

▲ Relative effect of category of error source

Random	
Locally systematic	
Systematic (single sensor)	Systematic (series)
L2 full res hi res instant daily total u	L3 global decadal stability
Error is not uncertainty.	

calibration, geolocation ...

propagation (random, systematic), inversion

propagation (rand., syst., locally syst.), sampling

extra-/interpolation, smoothing

L0 Techniques to $\mathbf{\Psi}$ trace the L1 uncertainty from each effect L2 causing error V through data **L**3 $\mathbf{\Psi}$ levels to CDRs. **L4**

DATASET	NATURE	USE
Surface Temperature CDRs	Ensemble SST and lake surface water temperature	Most of climate science model evaluation, re- analysis, derived/synthesis products
UTH CDR	From HIRS and MW, 1992 - 2016	Sensitive climate change metric, re-analysis
Albedo and aerosol CDRs	From M5 – 7 (1995 – 2006)	Climate forcing and change, health
Aerosol CDR	2002-2012 aerosol for	Climate forcing and

Systematic error is not simply bias.

Uncertainty:

Describes the spread of a probability distribution i.e. standard deviation

• Uncertainty is the doubt you have on the value

Error:

Difference from truth

- Result of measurement imperfections
- From random and systematic effects

New uncertaintyquantified CDRs, traceable to the FCDRs, via documented propagation of

uncertainty.

Europe and Africa from AVHRR

chinate forcing and change, health ...

 ∂f

Adding in quadrature

Sensitivity coefficient times uncertainty

Correlation term

Sensitivity coefficients times covariance

2 because symmetrical

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

