

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss EURO4M

Gridded ECVs and their use in Alpine region – experience from a national data Provider

Kunz H., Isotta F., Masson D., Frei C.

Introduction

The Alpine region is of particular relevance in regard to climate change due to the

Shortcomings of current gridded ECV's are • short period (e.g. limited use for glaciology)

Within our current work we

• provide long-term periods (multi-decadal)

- vulnerability of its natural systems (e.g. hydrology, Europe's stock of fresh water, glaciers)
- impact on different sectors (e.g. water and energy)
- limited use for climate monitoring
- input data not homogeneous
- artefacts from variable station density
- resolve on mesoscale
- focus on a key region of Europe
- use high quality data

Method

The statistical combination of a high resolution grid data set over few decades with centennial homogeneous station records (Masson and Frei, 2015) accomplished by reduced-space optimal interpolation (RSOI)

- Calibration during 1971-2008
- Reconstruction of 1901-2008

Figure 5. Example of a reconstructed field of precipitation [mm/day] for October 1907 (a documented flooding episode).

Figure 6. Photography taken in Locarno (Switzerland) at that time. Lago Maggiore: 4 m above average, Centovalli area: more than 1100 mm per month.

Figure 8. Long-term variation of seasonal precipitation in two subregions of the Alps (a) CSA: central Southern Alps (b) NEA: North-Eastern Alps

Evolution of mean winter (DJF) precipitation (steps; blue in online) for (d) CSA- and (c) NEAregion. Low-pass filtered time series (8-year moving average, thick blue line), mean and standard deviation (horizontal thick blue lines), linear regression (thick red line) and low-pass filtered time series and the standeviations for the dard HISTALP dataset (black lines).

Proposal of a contribution to Copernicus

- operational implementation of reconstruction of monthly precipitation
- whole Alpine region, mesoscale resolving
- since 1901, possibly back to 1870
- using high quality HISTALP station records
- as a regional element to the European ECV gridded products derived from observations
- Partners: all Alpine weather services (MeteoSwiss & ZAMG confirmed)

Gridded data sets from MeteoSwiss

- global radiation, temperature, sunshine duration, precipitation as well combined with radar data, Alpine precipitation grid dataset (EURO4M-APGD)
- free of charge for research purposes
- http://www.meteoswiss.admin.ch/home/services-and-publications/produkte.html

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Operation Center 1, P.O. Box 257 CH-8058 Zurich-Airport, Switzerland **Further information:** www.meteoswiss.ch

Contact: Heike.Kunz@meteoswiss.ch

References

- Masson, D. and C. Frei, 2015: Long-term variations and trends of mesoscale precipitation in the Alps: Recalculation and update for 1901-2008. Int. J. Climatol., doi:10.1002/joc.4343.
- Isotta F et al., 2014: The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 34: 1657–1675, doi: 10.1002/joc.3794.