

Met Office

Questions to Address

- What is currently available and how is it (or could be) used for climate services?

- What kind of input data, tools and activities are needed to support further development of these products?
- What could/should be the role of Copernicus in facilitating/harmonising/stimulating this development?

Met Office

Questions to Address

- What is currently available and how is it (or could be) used for climate services?
- What kind of input data, tools and activities are needed to support further development of these products?
- What could/should be the role of Copernicus in facilitating/harmonising/stimulating this development?

Timeline of satellite observations separated into different instrument types

In-Situ

Reprocessing Activities Fundamental Climate Data Records

- NASA (especially very old satellites)
- NOAA
- ESA
- EUMETSAT (CAF, CM SAF)
- JMA

Reprocessing Activities Climate Data Records

- NASA (MEaSUREs, Obs4MIPS)
- NOAA (NCDC, STAR, CIMSS, ...)
- ESA (GlobXXX, Climate Change Initiative)
- EUMETSAT (CAF, CM SAF)
- SCOPE-CM (Japanese GEOs, Albedo,...)

Satellite climate data records

- ESA CCI
- EUMETSAT CM SAF
- NASA Obs4MIPS
 NOAA-NCDC

Climate Change Initiative

Realise the full potential of the long-term global EO archives that ESA, together with its Member states, has established over the last thirty years ...

... as a significant and timely contribution to the ECV databases required by the United Nations Framework Convention on Climate Change

6 Years 88 Meuro

CCI Key Benefits cci.esa.int

- User requirements determined for all ECVs including GCOS input.
- Open process of algorithm inter-comparison and selection to define best techniques
- Uncertainty provided with data
- Consistency between CDRs of different ECVs
- Long term preservation of data archives and seamless access for users (e.g. Earth System Grid Federation for modelers)
- CDRs will be openly and independently verified validated and assessed for their utility

Consistency between datasets is important

An example of why we need consistency across ECVs Arctic Sea-ice melting •Extent of sea-ice melting? (monitoring)

E.g. sea-ice extent, thickness •Why is sea-ice melting? (attribution) Need data on SST, SSH (eddies), ice drift •Effect of sea-ice melting? (impact) e.g. Ocean colour (plankton), weather ... •Future sea-ice melting? (prediction) e.g. better initial / boundary conditions

Ice loss shifts Arctic cycles

Record shrinkage confounds models and portends atmospheric and ecological change

IT CHAIN CONCENTRATE The control of the sub-energing a transit of the sub-energing a transit in the sub-energing a transi	(NSIDC) in Bedder, Color record decline on 26 Aug ice extent had dropped to kilconetres (see Yooing, go 70,000 square kilometror one veeds before the ann reached. According to the rember that figure had 04/04, to around 3.52 million The massive melt has on ormal weaking according to the storne storner storn to basten the break-up of the pack ice., Mark Serreze, director of the	ust, saying that the 4.10 million square ing). The figure is less than the previ- , and it came at least ual low is typically r NSIDC, by 9 Sep- ropped by another n square kilometres.	NSIDC, says that much of the Artist: pack is non-thin first year. In-fraren only inter a single search and the search of the sea

A WO Monthly Schleber Linded Al cide entered

Satellite climate data records

- ESA CCI
- EUMETSAT CM SAF
- NASA Obs4MIPS
 NOAA-NCDC

Deutscher Wetterdienst

Swedish Meteorological and Hydrological

Royal Netherlands Meteorological Institute

Royal Meteorological Institute Belgium

Federal Office of Meteorology and Climatology

Finnish Meteorological Institute

Climate Data Records of Essential Climate Variables from the EUMETSAT Satellite Application Facility on Climate Monitoring

Mean cloud fraction (1982-2009)

DOI:10.5676/EUM_SAF_CM/CLARA_A/V001

 CM SAF provides free data access , comprehensive documentation & user support

www.cmsaf.eu

 CM SAF provides sustained development & production of peer-reviewed
 Climate Data Records related to the energy & water cycle

Mean global radiation (1983 - 2013)

DOI:10.5676/EUM_SAF_CM/SARAH/V001

CDRs from the Satellite Application Facility on Climate Monitoring

www.hoaps.org / CM SAF / MPI-MET / Uni-HH

DOI:10.5676/EUM_SAF_CM/FCDR_SSMI/V001

DOI:10.5676/EUM_SAF_CM/HOAPS/V001

	FCDR	TCDR	ICDR
CDR type	Fundamental Climate Data Record	Thematic Climate Data Record	Intermediate Climate Data Record
CDR description	Calibrated /Intercalibrated Sensor data	Long time series of Essential Climate Variables	Regular & consistent updates of TCDRs

www.hoaps.org / CM SAF / MPI-MET / Uni-HH

Satellite climate data records

ESA CCI EUMETSAT CM SAF NASA Obs4MIPS NOAA-NCDC

https://www.earthsystemcog.org/projects/obs4mips/

- Observationally-based datasets used for climate model evaluation. Obs4MIPs refers to a limited collection of wellestablished and documented datasets that have been organized according to the CMIP5 model output requirements and made available on the ESG. Each Obs4MIPs dataset corresponds to a field that is output in one or more of the CMIP5 experiments. To summarize, products available via Obs4MIPs are:
- Directly comparable to a model output field defined as part of CMIP5
- Open to contributions from all data producers that meet the Obs4MIPs requirements
- Well documented, with traceability to track product version changes
- Served through Earth System Grid Federation

Satellite climate data records

→ESA CCI

→ EUMETSAT CM-SAF

→NASA Obs4MIPS

→NOAA-NCDC

Satellite climate data records

Marine / Ocean

Paleoclimatology

Severe Weather

NOAA's National Climatic Data Center (NCDC) initiated a satellite Climate Data Record (CDR) program to continuously provide objective climate information derived from weather satellite data that NOAA has collected for more than 30 years. These data comprise the longest record of global satellite mapping measurements in the world, and are complemented by data from other sources including NASA and Department of Defence satellites as well as foreign satellites.

Formerly the National Climatic Data Center (NCDC)... more about NCEI »

Home Climate Info	ormation	Data Access	Customer Support	Contact	About	Search	<u>q</u>
Home > Data Access > Sa	atellite Dat	э					
Quick Links		Satellite	e Data				
Land-Based Station	~	The National	Oceanic and Atmosph	eric Admini	stration (NOAA)		
Satellite	^		The National Oceanic and Atmospheric Administration (NOAA) manages a constellation of geostationary and polar-orbiting				
Datasets	~	meteorological spacecrafts. These satellites are distributed among three operational programs: the Suomi National					
Sorted by Satellite/Instrument		Polar-orbiting	Polar-orbiting Partnership (S-NPP), the Geostationary Operational Environmental Satellite Program (GOES), and the				
Satellite Imagery		Polar Operational Environmental Satellite Program (POES). The U.S. Department of Defense operates the satellites of the				TAT.	
Datasets in Developm	ient		orological Satellite Pro			Mar I I	2 Aller
Radar	~	archives and o Program.	distributes the data un	der the Sha	ared Processing		
Model	~					1 Martin P	and a state of the second
Weather Balloon	~	,	/ and polar-orbiting sa that are collected by s			Suomi National Polar-orbiting P orbiting above the Earth (artist'	

radiance data that are collected by ground stations and

archived by NCDC. These continuous global environmental observations are then derived to produce various geophysical variables that help to describe the Earth's atmospheric, oceanic, and terrestrial domains.

Geostationary satellites help monitor and predict weather and environmental events including tropical systems, tornadoes, flash floods, dust storms, volcanic eruptions, and forest fires. Polar-orbiting satellites collect data for weather, climate, and environmental monitoring applications including precipitation, sea surface temperatures, atmospheric temperature and humidity, sea ice extent, forest fires, volcanic eruptions, global vegetation analysis, as well as search and rescue. NOAA's satellite data improve the Nation's resilience to climate variability, maintain our economic vitality, and improve the security and well-being of the public.

Satellite Data Access by Dataset

NCDC archives numerous datasets such as sea surface temperature and cloud data.

- Satellite Data Access by Satellite and Instrument Access to datasets is sorted by satellite and instrument.
- Satellite Imagery Satellite imagery is described with access provided to image browsers, posters, historical imagery, and custom imagery.
- Satellite Datasets in Development

NCDC continues to steward satellite data-checking dataset quality, producing climate records, and performing

GCOS ECVs

	Surface	Air temperature; Precipitation, Pressure, Surface radn budget, Wind	
Atmosphere	Upper Air	Clouds, Wind, Earth Radn Budget Upper air temp, water vapour	
	Composition	Carbon dioxide, methane & GHGs Ozone, Aerosol properties	
Ocean	Surface	SST, Sea-level, Sea-ice, Ocean colour Sea state, Salinity, CO ₂ partial pressure	
	Sub-surface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean Tracers, Phytoplankton	
Terrestrial	Glaciers & Ice caps, Land cover, Fire disturbance, FaPAR, LAI, Albedo, Biomass,Lake levels, Snow cover, Soil moisture, Water use, Ground water, River discharge, Permafrost, Seasonally frozen ground, Ice Sheets		

CCI has 13 ECVs

	Surface	Air temperature; Precipitation, Pressure, Surface radn budget, Wind	
Atmosphere	Upper Air	Clouds, Wind, Earth Radn Budget Upper air temp, water vapour	
	Composition	Carbon dioxide, methane & GHGs Ozone, Aerosol properties	
Ocean	Surface	SST, Sea-level, Sea-ice, Ocean colour Sea state, Salinity, CO ₂ partial pressure	
	Sub-surface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean Tracers, Phytoplankton	
Terrestrial	Glaciers & Ice caps, Land cover, Fire disturbance, FaPAR, LAI, Albedo, Biomass,Lake levels, Snow cover, Soil moisture, Water use, Ground water, River discharge, Permafrost, Seasonally frozen ground, Ice Sheets		

CM SAF has 8 ECVs

	Surface	Air temperature; Precipitation, Pressure, Surface radn budget, Surface wind		
Atmosphere	Upper Air	Clouds, Wind, Earth Radn Budget Upper air temp, water vapour		
	Composition	Carbon dioxide, methane & GHGs Ozone, Aerosol properties		
Ocean	Surface	SST, Sea-level, Sea-ice, Ocean colour Sea state, Salinity, CO ₂ partial pressure		
	Sub-surface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean Tracers, Phytoplankton		
Terrestrial	Glaciers & Ice caps, Land cover, Fire disturbance, FaPAR, LAI, Albedo, Biomass,Lake levels, Snow cover, Soil moisture, Water use, Ground water, River discharge, Permafrost, Seasonally frozen ground, Ice Sheets			

Obs4MIPs 12 ECVs

	Surface	Air temperature; Precipitation, Pressure, Surface radn budget, Wind	
Atmosphere	Upper Air	Clouds, Wind, Earth Radn Budget Upper air temp, water vapour	
	Composition	Carbon dioxide, methane & GHGs Ozone, Aerosol properties	
Ocean	Surface	SST, Sea-level, Sea-ice, Ocean colour Sea state, Salinity, CO ₂ partial pressure	
	Sub-surface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean Tracers, Phytoplankton	
Terrestrial	Glaciers & Ice caps, Land cover, Fire disturbance, FaPAR, LAI, Albedo, Biomass,Lake levels, Snow cover, Soil moisture, Water use, Ground water, River discharge, Permafrost, Seasonally frozen ground, Ice Sheets		

NCDC 13 ECVs

	Surface	Air temperature; Precipitation, Pressure, Surface radn budget, Wind	
Atmosphere	Upper Air	Clouds, Wind, Earth Radn Budget Upper air temp, water vapour	
	Composition	Carbon dioxide, methane & GHGs Ozone, Aerosol properties	
Ocean	Surface	SST, Sea-level, Sea-ice, Ocean colour Sea state, Salinity, CO ₂ partial pressure	
	Sub-surface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean Tracers, Phytoplankton	
Terrestrial	Glaciers & Ice caps, Land cover, Fire disturbance, FaPAR, LAI, Albedo, Biomass,Lake levels, Snow cover, Soil moisture, Water use, Ground water, River discharge, Permafrost, Seasonally frozen ground, Ice Sheets		

What ECVs are missing?

	Surface	Air temperature,	Pressure,
Atmosphere	Upper Air		
	Composition		
	Surface		
Ocean		Sea state, Salinity, CO ₂ par	tial pressure
	Sub-surface	Temperature, Salinity, Curr Carbon, Ocean Tracers, Ph	
Terrestrial			
	Biomass,Lake levels, Water		
	use, Ground water, River discharge, Permafrost, Seasonally		
	frozen ground,		
	i ozen grouna,		

What ECVs are missing?

Surface	Air temperature,	Pressure,
Upper Air		
Composition		
Surface		
	Sea state, Salinity, CO ₂ part	tial pressure
Sub-surface	Temperature, Salinity, Curre Carbon, Ocean Tracers, Phy	
Biomass,Lake levels, Water		
use, Ground water, River discharge, Permafrost, Seasonally		
	Upper Air Composition Surface Sub-surface Biomass	Upper Air Composition Surface Sea state, Salinity, CO2 part Sub-surface Temperature, Salinity, Curre Carbon, Ocean Tracers, Physical Sea, Ground water, River discharge, Permafree

Some Examples of CDRs

- Sea surface temperature CCI/Pathfinder
- Ocean colour- CCI
- Ozone CCI
- Surface radiation fluxes CM SAF
- Soil moisture CCI
- Land Cover CCI
- Sea-ice Cryosat

Satellite SST datasets Courtesy J. Kennedy

Global seasonal average SST anomalies (relative to 1961-1990 climatology)

Validate observational uncertainty

Use Buoy SSTs to validate uncertainties provided with ATSR record

Uncertainty in CCI ATSR SST

Global mean total column O₃ Courtesy R. Dragani

ERA-Interim is 10DU lower than MACC or CCI and annual cycle is much less.

MACC reduction in ozone in Autumn is more rapid than CCI.

Surface Radiation August 2014 absolute anomaly CM SAF

The product shown is based on data provided by EUMETSAT Satellite Application Facility on Climate Monitoring, hosted by Deutscher Wetterdienst

http://www.dwd.de/rcc-cm

Land Cover datasets available

- Land cover state for 3 'epochs':
 - 2000: (1998-2002)
 - 2005: (2003-2007)
 - 2010: (2008-2012)
- Land surface Condition:
 - NDVI

esa

- Burnt area
- Snow cover
- Water bodies mask
- MERIS Surface Reflectance
- User tool

Loew et al., 2013

Sea and land ice climate data

Ice sheet contribution to sea level

CryoSat-2 real time sea ice thickness

Questions to Address

- What is currently available and how is it (or could be) used for climate services?

- What kind of input data, tools and activities are needed to support further development of these products?
- What could/should be the role of Copernicus in facilitating/harmonising/stimulating this development?

Tools, data and activities

- Uncertainties, metadata, and unique doi
- Independent assessment of CDRs (e.g. CMUG-like activity)
- Data portal (e.g. Obs4MIPS, CCI)
- Visualisation of datasets (see end of talk)
- Observation simulators for climate model comparisons
- Radiative transfer models for assimilation
- A review process to advise of improvements that could be made to CDRs and requirements for it
- Promotion of CDRs to user communities (C3S user forum, interactive web presence)

Tools, data and activities

- Uncertainties, metadata, and unique doi
- Independent assessment of CDRs (e.g. CMUG-like activity)
- Data portal (e.g. Obs4MIPS, CCI)
- Visualisation of datasets (see end of talk)
- Observation simulators for climate model comparisons
- Radiative transfer models for assimilation
- A review process to advise of improvements that could be made to CDRs and requirements for it
- Promotion of CDRs to user communities (C3S user forum, interactive web presence)

Need for Obs Simulators

Geophysical measurements (e.g. radiance, bending angle)

Model grid variables (e.g. temp, water vapour, wind, etc)

Compare in model space

Retrieve model variables

Need for Obs Simulators

Geophysical measurements (e.g. radiance, bending angle)

Compare measured and simulated measurements

Model grid variables (e.g. temp, water vapour, wind, etc)

> Compute satellite measurements using simulator (e.g. COSP)

Need for Obs Simulators

Geophysical measurements (e.g. radiance, bending angle)

Model grid variables (e.g. temp, water vapour, wind, etc)

Both approaches are useful depending on the ECV

CFMIP Observation Simulator Package

Satellite simulation software for model assessment

COSP

by A. Bodas-Salcedo, M. J. Webb, S. Bony, H. Chepfer, J.-L. Dufresne, S. A. Klein, Y. Zhang, R. Marchand, J. M. Haynes, R. Pincus, and V. O. John

By simulating the observations of multiple satellite instruments, COSP enables quantitative evaluation of clouds, humidity, and precipitation processes in diverse numerical models.

CFMIP web: <u>http://www.cfmip.net/</u> -> COSP User group: <u>http://groups.google.com/group/cosp-user</u> Code: <u>http://code.google.com/p/cfmip-obs-sim/</u>

•Used in the CFMIP2 and CMIP5 experiments

CFMIP web: <u>http://cfmip.metoffice.com/COSP.html</u> User group: <u>http://groups.google.com/group/cosp-user</u> Code: <u>http://code.google.com/p/cfmip-obs-sim/</u>

(Bodas-Salcedo et al., BAMS, 2011)

Comparison against satellite data over the tropics

WCRP Grand Challenges: (1) Clouds, circulation and climate sensitivity, (2) Changes in cryosphere, (3) Climate extremes, (4) Regional climate information, (5) Regional sea-level rise, and (6) Water availability, plus an additional theme on "biospheric forcings and feedbacks"

Performance Metrics for Climate Models

- Relative error measures of CMIP5 model performance, based on the global seasonal-cycle climatology (1980–2005) computed from the historical CMIP5 experiments. Figure 9.8 of IPCC AR5 (Flato et al., 2013).
- A similar figure will be **produced for selected ESA CCI ECVs using ESA CCI as the reference data set** and if available an alternate observational data set for comparison.

Met Office

Questions to Address

- What is currently available and how is it (or could be) used for climate services?

- What kind of input data, tools and activities are needed to support further development of these products?
- What could/should be the role of Copernicus in facilitating/harmonising/stimulating this development?

Role of Copernicus Climate Service

- Maintain user requirements for climate datasets
- Provide framework for routine climate dataset production
- Provide easy access to datasets and documentation
- Provide long term data preservation
- Ensure quality of climate datasets are maintained and improved through independent assessments
- Ensure access and/or compatibility with associated tools for post processing, observation simulators etc
- Provide input to future satellite climate program to ensure continuity

Ensuring future ECV measurements

GCOS ECV	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	Sensors		
Atmospheric																					
Surface precip																			SSMIS, AMSR, MWRI, TRMM, GPM, ATMS, GEO Vis/IR		
Surface wind																			ASCAT, OSCAT, HY-2, RapidScat, WindRAD		
TOA radn budget																			CERES, EarthCARE, SCARAB, RBI		
Solar irradiance																			TSIS, ACRIM, SORCE, Picard		
Temp profile																			Sounder radiances, GPS-RO		
Water vapour profile																			Sounder radiances, GPS-ZTD		
Wind profile																			AMVs, ADM		
Cloud properties																			Cloudsat, EarthCare, VIS/IR imagers (GEO/LEO)		
Carbon dioxide																			AIRS, IASI,OCO-2/3,CRIS, GOSAT, GAS		
Methane																			AIRS, IASI, GOSAT, CrIS, MTG-IRS, Schiamachy, MOPPIT		
Ozone																			GOME-2,IASI,AIRS,CRIS, IR, UV limb, OMPS, OMI		
Other GHG																			IASI, GOME-2, UV/IR limb, GOSAT, Sentinel-5		
Aerosols																			AVHRR, VIIRS, GOME-2, MERIS, MODIS, Sent-4/5, MTG		
Oceanic																					
SST																			AATSR, SLSTR, AVHRR, AMSR-2, MODIS, VIIRS, GeoIR		
Surface salinity																			SMOS, Aquarius, SMAP		
Sea level																			TOPEX,Jason-1,2,3, Sentinel-3 ALT, Sentinel-6		
Sea state																			Jason-1,2 Sentinel 3 ALT		
Sea-ice																			SSM/I, AMSR, SSMI(S), Cryosat-2, ICESAT-2, SMOS		
Currents																			Jason-1,2,3?, Sentinel-3 ALT		
Ocean colour																			MERIS, MODIS, VIIRS, OLCI		
Terrestrial																					
LST																					
LST Lake levels																			AATSR, SLSTR, AVHRR, AMSR, MODIS, VIIRS, CriS, IASI		
																			Jason-1,2,3, Sentinel 3 ALT		
Snow cover and SWE																			SSMIS, AMSR, AVHRR, MODIS, Geo Imagers		
Glaciers and ice caps																			GRACE, Cryosat-2, ICESat, ASTER, Landsat		
Permafrost																			MODIS, VIRSS,SAR		
Albedo																			AVHRR, MODIS, VIRSS		
Land cover (inc veg)																			Sentinel-2, MODIS, VIRSS, Landsat, TerraSAR		
fAPAR																			MODIS, VIRSS, MERIS, Sentinel-2		
LAI																			MODIS, VIRSS, MERIS, Sentinel-2		
Biomass																			Sení Kou		
Fire																			Geo Key		
Soil moisture																			Asc Good capability		
Ground water																			GRA Some capability but needs improvement		
© Crown copyright Met Office Poor capability Capability lost																					
																			Capability reduced		
No capability																			No capability		

We don't want users of climate datasets to be like this!

CM SAF CDRs and System Maturity Matrix (1 lowest; 6 highest)

Climate Monitoring

#	Climate Data Record	Software Readiness	Meta data	User document ation	Un certainty characteri zation	Public access, feedback and update	usage
1	Fundamental Climate Data Record of SSM/I Brightness Temperatures http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_SSMI/V001	1 - 4	5 – 6	2 – 5	3 – 5	4 - 5	1 - 2
2	MVIRI+SEVIRI free tropospheric humidity (FTH) dataset http://dx.doi.org/10.5676/EUM_SAF_CM/FTH_METEOSAT/ V001	1-3	5 -6	3 - 5	3 - 4	4 - 5	2 - 3
3	Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data HOAPS 3.2 http://dx.doi.org/10.5676/EUM_SAF_CM/HOAPS/V001	1 - 5	5	4 - 5	2 - 4	4 - 5	2 - 4
4	CM SAF Surface Radiation MVIRI Data Set 1.0 http://dx.doi.org/10.5676/EUM_SAF_CM/RAD_MVIRI/V001	2 – 4	4 - 6	5 – 6	3-4	5 - 6	4 - 5
5	CM SAF Clouds, Albedo and Radiation dataset from AVHRR data http://dx.doi.org/10.5676/EUM_SAF_CM/CLARA_A/V001	3 – 5	4 – 5	4 – 5	3 – 4	5	2 - 4
6	CM SAF ToA Radiation "GERB" dataset - Edition1 http://dx.doi.org/10.5676/EUM_SAF_CM/TOA_GERB/V001	2-5	4-5	3-4	3-4	5	2-3
7	CM SAF CLoud property dAtAset using SEVIRI (CLAAS), edition 1 http://dx.doi.org/10.5676/EUM_SAF_CM/CLAAS/V001	2-4	3-4	4-5	4	5	1-4
8	MVIRI+SEVIRI free tropospheric humidity (FTH) dataset http://dx.doi.org/10.5676/EUM_SAF_CM/FTH_METEOSAT/ V001	1-4	3-4	3-5	3-4	3-5	4-5
9	Surface Solar Radiation Data Set - Heliosat (SARAH) http://dx.doi.org/10.5676/EUM_SAF_CM/SARAH/V001	3-4	3-5	4-6	3-4	5	4-5
10	Fundamental Climate Data Redord of SSMI / SSMIS Brightness Temperatures http://dx.doi.org/10.5676/EUM_SAF/FCDR_MWI/V002	1 - 4	5 – 6	2 – 5	3 – 5	4 - 5	1 - 2