

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Next generation models at MeteoSwiss:

communication challenges

<u>Tanja Weusthoff</u>, MeteoSwiss Material from André Walser and Marco Arpagaus

- New model systems at MeteoSwiss: Project COSMO-NExT
- New possibilities: How should we use the Ensemble COSMO-E?
- Communication challenges: How to bring probabilities to the customer?

NWP at MeteoSwiss: Status Quo

ECMWF IFS-HRES (global)

• 16 km, 137 levels

67

COSMO-7 (regional)

- 6.6 km, 60 levels
- +72h, 3x per day

COSMO-2 (local)

- 2.2 km, 60 levels
- +33h, 8x per day on-demand mode
- +6h, hourly

New model systems at MeteoSwiss: Project COSMO-NExT

J

KENDA: km-scale ensemble data assimilation

Replace current COSMO nudging assimilation system with a new, state-of-the-art Ensemble Kalman Filter (LETKF: Local Ensemble Transform Kalman Filter)

Better analysis through

- optimal combination of model and observations based on error statistics;
- flow-dependent background error statistics based on ensemble;
- much more flexibility in using new observations!

- Deterministic forecasts with convection-permitting resolution (1.1 km mesh-size)
- Targeted for the very short-range (+24h)
- Rapid update cycle with new forecast every 3 hours
- On demand mode for key clients
- ICs from LETKF, LBCs from IFS-HRES
- COSMO-1 has the best representation of the
 - complex Alpine topography
 - physical processes of extreme weather events

COSMO-E: Keywords

- Ensemble forecasts with convection-permitting resolution (2.2 km mesh-size) and 21 members
- Runs twice a day up to +120h for Alpine area
- Perturbations:
 - initial conditions (ICs): from KENDA (currently IFS-ENS and re-cycled soil)
 - lateral boundary conditions (LBCs): IFS-ENS
 - model errors: Stochastic Perturbation of Physical Tendencies (SPPT)
- Provides probabilistic forecast as well as "best estimate" and forecast uncertainty

Verification

Summary surface Winter 2014/2015; COSMO-E vs. COSMO-LEPS; Total scores all lead times

Parameter	RPS(S)	Outliers	Spread/ Error	Resolution Thrs1	Resolution Thrs2
Surf. Pres.	na	na	na	na	na
T 2m	\checkmark	☑ / 🗵	\checkmark	\checkmark	\checkmark
Td 2m		✓ / ×			
dd 10m	na	na	na	na	na
ff 10m	\checkmark	\checkmark	\checkmark		
CLCT	na	na	na	na	na
Prec 12h	\checkmark	\checkmark		\checkmark	
Prec 1h	\checkmark	\checkmark			
Gusts					

Next generation models at MeteoSwiss tanja.weusthoff@meteoswiss.ch

Precipitation 1 h Sum

0

How should we use COSMO-E? Best practice (1)

- use full probabilistic output in a probabilistic approach
- use of COSMO-E in deterministic forecasting
 - mean (strong smoothing effect for high-impact weather)
 - median
 - representative member of most probable cluster in case of large spread of ensemble
 - ... and additionally provide uncertainty!
- consider post-processing techniques to account for not (yet) sampled model errors

How should we use COSMO-E? Best practice (2)

- use of COSMO-E for warnings
 - use full probabilistic output and do not ignore low probability events ("early indications ... will be ... in the tail ...")

References:

[1] http://www.wmo.int/pages/prog/www/Documents/1091_en.pdf

[2] http://www.wmo.int/pages/prog/www/DPFS/Documentation/Guidelines_ET-EPS2006.pdf

[3] http://www.wmo.int/pages/prog/amp/pwsp/documents/TD-1422.pdf

Example products: median + spread

Precipitation Amount [mm/24h] Ensemble STDE of precipitation [mm/24h]

Contours at: 1, 5, 10, 20, 50mm/24h

Example products: quantiles

COSMO-E ENSEMBLE_FORECAST 24h Sum of Total Precipitation

Sun 21 Sep 2014 12UTC 16.09.2014 12UTC +120h

Example products: stamp map

0

Sun 21 Sep 2014 12UTC 16.09.2014 12UTC +120h

Example products: Meteogram

0

Summary: Potential for new products

- COSMO-E
 - probabilistic products at convection-permitting resolution
 - especially suited for rare / extreme events \rightarrow warnings
 - forecast always accompanied with an "error bar"
- COSMO-1
 - best possible deterministic forecast with high update frequency; benefit over COSMO-E especially for process and regions, where horizontal resolution is most important
- KENDA
 - best state of the atmosphere, with an estimation of the uncertainty

Communication challenges: «How to bring probabilities to customer?»

- many existing customers will get COSMO-E products instead of deterministic COSMO-7 / COSMO-2, i.e. added value
- But: probably not all of these customers can / want to handle uncertainties
- Speak to customers to decide whether and how uncertainties are useful
 - what is the added value → uncertainty may be an improvement for customer applications
 - choose appropriate deterministic product if necessary (median or ctrl)

J

Communication challenges: «How to bring probabilities to customer?»

- Use of COSMO-E (all members):
 - potentially lots of data
 - availability of all members offers flexibility, but requires processing on customer side
 - processing on our side (probabilities, quantiles,...) reduces data amount
- \rightarrow Challenges concerning field customers
 - data amount

J

- deterministic forecast (constistent; ctrl, median or others?)
- \rightarrow Challenges for «individual point» customers
 - add quantiles or probabilities to current forecast

Discussion

... from your experience, how should we proceed ...

- Give as much probability information as possible to the customer, no matter if they want it?
- If deterministic forecast required, which is the best choice: median (which verifies best) or control (which is an actual forecast and not an artificial product)?