Assimilation of cloud and precipitation
from satellite

Alan Geer
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Niels Bormann, Stephen English ... and many others

ECMWEF physics seminar 4 Sep 2015 Slide 1 —AE MWF
A\ 4 c



Assimilating hydrometeors: putting together the pieces

® Cloud and precipitation radiative transfer
- Talks by Keith Shine and Robin Hogan on Tuesday:

Model radiation schemes simulate broadband fluxes approximately; a
satellite observation operator computes narrow-band radiances as

accurately as possible

But the basic principles are the same (e.g. two-stream solvers...)

- Grant Petty’s “A first course in atmospheric radiation” (2006)
® Cloud and precipitation-capable forecast models (all seminar)
® Radiance observations (NOT derived products)
® Data assimilation methods: variational data assimilation

® Tangent linear and adjoint models of the full nonlinear physics:
- cloud and precipitation schemes (Philippe Lopez and Marta Janiskova talks)

- satellite radiative transfer
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Information content in microwave radiances
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GOES visible - 002 Microwave WYV - 00-05Z

Dundee receiving station / NOAA / EUMETSAT Metop-B 190 GHz

June 12 2013
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Window channels (“imaging”):
surface properties, water vapour, cloud and precipitation
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Separating the COmpOnentS: 37h GHz (h=horizontal polarisation)
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Window channels (“imaging”):
surface properties, water vapour, cloud and precipitation
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Sounding channels: temperature, water vapour, cloud and precipitation

Temperature sounding: Water vapour sounding:
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All-sky assimilation

® Most satellite radiances are sensitive not just to cloud and
precipitation but also temperature, water vapour, surface
properties:

- Assimilate all of this information simultaneously, without special
treatment, directly as radiances, in “all sky conditions”
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Current status of cloud and precipitation
assimilation in microwave
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All-sky microwave status in ECMWF operations (41r1)

T

SSMIS-F17 imager

Imager channels

GMI v X X
19-90 GHz
AMSR2 v X X
SSMIS-F17 sounder v v v
183 GHz WV L, L, L,
channels f§ #*MH>
ATMS, MWHS Clear-sky (no cloud assimilation)
SSMIS Not assimilated — instrument issues
50 GHz 6XAMSU-A Clear-sky (no cloud assimilation)
temperature
ATMS Clear-sky (no cloud assimilation)
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Routine cloud and precipitation assimilation: 37 GHz

Observations TB [K]
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Routine cloud and precipitation assimilation: 37 GHz
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Importance of all observations in the NWP system

® Even without the assimilation of cloud-affected observations, all
other observations in the assimilation system (e.g. satellite
temperature-sensitive observations, radiosondes, and many more)
do a very good job of improving cloud and precipitation features in
the analysis.

® Everything (dynamics, cloud and precipitation) is inter-dependent

ECMWEF physics seminar 4 Sep 2015 Slide 14 —AECMWF
A 4



Observation — model (i.e. FG departure) at 37v GHz

Important: 4D-Var assimilation aims to fit all observations
within a time window, at ECMWF usually 12 hours

SSMIS observations|0900 UTC - 2100 UTC| 3 Dec 2014 FG
departure [K]
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All-sky assimilation components in 4D-Var

*FG, T+12,
Observation minus first-guess* departures in clear, background...
cloudy and precipitating conditions
Observation operator including cloud and precipitation
(RTTOV) - TL/Adjoint
 Rest of the |
global _ 4~ Moist physics - TL/Adjoint Background _____
observing A oY ' constraint
' system | Forecast model - TL/Adjoint __________________________

Control variables (winds and mass at start of assimilation
window) optimised by 4D-Var
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That ubiquitous 4D-Var costfunction

1. We will vary model state x
to find the best analysis

2. Aiming to improve the fit between observations
y and simulated observations H(M(x))

|

J&) = —HME)D' R (y—HM®)) +(x — x B71 (x — xp)

3. But it must not get too far away
from the model background x,

4. The relative weight given to observations versus
model background is controlled by their respective
error matrices R and B
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To find the costfunction minimum, follow the gradient:

® For observation [ at start of minimisation (at background x;),
gradient of the cost function J is:

Observed Nonlinear forward
ROTO g AIOT % oniny et o
Gradient of cost i cludine moist observation observation [ MESEPS -
function with ohysics & operator - gpservation\ operator Model

respect to control error X background

variables \4 l
TmT -1 .
M;M;...M4, (yi =/ Hi(M1-15(Xp)))
‘ First guess
tb departure
u* u* u* u u
v AR (v [ v)
clw” Clw clw
ciw”® ciw
\ rain* ) \ raln \ rain /
z* is shorthand for 0J/ dz* snow” snow snow
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Key components needed for a cloud and precipitation
assimilation system

® An existing assimilation system:
- and all the conventional and satellite observations that go with it
- agood first guess forecast
® Extra components:
- Cloud and precipitation-sensitive observations
- Simplified moist physics model (direct, TL and adjoint) — Philippe’s talk

- Cloud and precipitation capable radiative transfer model (direct, TL and
adjoint) — for simulating observations
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RTTOV-SCATT

Forward, TL and adjoint radiative transfer model for NWP
® Inputs are:

- profiles of: pressure, temperature, water vapour, cloud water, cloud ice, rain
water, snow, cloud fraction, precipitation fraction

- surface properties including emissivity or wind speed, skin temperature
® Gas optical depths (water vapour, oxygen, ...) are parametrised

® Bulk hydrometeor optical properties:

Cloud liquid water — gamma distribution; Mie sphere

Cloud ice water — gamma distribution; Mie sphere

Rain — Marshall-Palmer distribution, Mie sphere

Snow — Field et al (2007), Liu (2008) DDA sector snowflake

® Scattering solver: two-stream delta-Eddington

® Subgrid representation with “effective cloud fraction” C:
Ttotal = C><Tcloud + (1_C)XT

clear
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Frontal cloud and precipitation:
single-observation example at 190 GHz

Metop-B MHS 08Z, 15 Aug 2013
190 GHz 47°N 159°W
GOES

10pum
Dundee receiving P
station ‘



Frontal cloud and precipitation — all observations
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Frontal cloud and precipitation — single all-sky obs
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B) Frontal cloud and precipitation — 190 GHz
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Why assimilate cloud and precipitation in a global
model?
® Infer wind, humidity and temperature increments to better fit

observed cloud and precipitation (and other things observed
simultaneously, like temperature and water vapour)

- Assimilating water vapour and temperature in the presence of cloud

- Assimilating cloud and precipitation itself

® Better wind, humidity and temperature analysis leads to better
forecasts

- Removing “all-sky” microwave instruments from the operational system
would degrade forecast quality at day 5 by about 3%
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One catch: representivity / predictability
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Representing cloud and precipitation in models

Observations 250 TB [K]
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Representing cloud and precipitation in models

Observations

Why such large errors?

* [Poor predictability
and/or representivity of
cloud and precipitation,
particularly in
convective situations

* Accuracy of forecast
model’s cloud and
precipitation
parametrization

ECMWF FG

e Accuracy of the
observation operator
(scattering radiative
transfer simulations)




How to deal with the representivity issue

® We don’t aim to put every cloud and precipitation feature “in the
right place” in the analysis:

- this is currently impossible, at least not without destroying the large-scale
dynamical analysis

- “convective error growth” saturates in about 3 hours (see e.g. Martin
KOhler’s talk) but we are assimilating within a 12h window.

® We apply relatively large observation errors:

- No single observation can push the analysis too far

- But many observations working together, in combination with temperature
and wind observations, push the dynamical analysis to a point where it
produces “on average” better hydrometeor features:

we can shift fronts

we can shift large convective systems
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Impact of all-sky
microwave humidity

sounders and imagers -

on top of the otherwise full
observing system

2-3% impactonday 4 and 5
dynamical forecasts

Change in RMS error of vector wind
Verified against own analysis

Blue = error reduction (good)
Based on 322 to 360 forecasts

Cross hatching indicates 95%
confidence
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Assimilate only microwave T-sounding obs (6 AMSU-A, ATMS)

66 different analyses and forecasts, always from a full-observing system FG
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Assimilate only all-sky WV sounding observations (4 MHS, 1 SSMIS)

66 different analyses and forecasts, always from a full-observing system FG
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Improving modelled cloud and precipitation
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Observation — model (i.e. FG departure) at 37v Ghz
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Observation — model (i.e. FG departure) at 37v Ghz
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Observation — model (i.e. FG departure) at 37v Ghz
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Observation — model (i.e. FG departure) at 37v Ghz
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Observation — model (i.e. FG departure) at 37v Ghz
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|\/|0nth|y mMmean biases at 37 GHZ (sensitive to cloud, water vapour and rain)

SSMIS channel 37v, December 2014 — all data over ocean, including observations usually removed by QC
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Diurnal cycle of marine stratocumulus
Bias analysed for June-Sep 2013 by Kazumori et al. (2015, QJRMS, submitted)
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Diurnal cycle of marine stratocumulus
Bias analysed for June-Sep 2013 by Kazumori et al. (2015, QJRMS, submitted)
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Cold air outbreaks

Thanks to Katrin Lonitz and Richard Forbes

127 24™ August, 2013, 37v FG departure
[normalised]
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Cold air outbreaks

Thanks to Katrin Lonitz and Richard Forbes

Composite MODIS image on 24 August 2013 at 08 Z. e~
area shown spans from 180°W to 60° W and from the equator

to 60°S.
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www.calipso.larc.nasa.gov/products/lidar/browse_images/show_dat
30&browse_date=2013-08-24
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Cold air outbreaks

Thanks to Katrin Lonitz and Richard Forbes
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Cold air outbreaks: detrainment from shallow convection
Thanks to Richard Forbes and Katrin Lonitz

IFS T+12 total column liquid water path (kg m-2)

S 001 0.02 005 01

Allow supercooled
liquid water
detrainment at lower

Diagnostic mixed
phase detrainment ‘
between 0 and -23C = S

180°W 150" W 90w

Cycle 40r1+40r3physics+SLW

Vertical cross
section through -———=
CAO -

i EELY - 3000

Py

I .

L=

i - =N
= = = = e 76008

1
AR

30 30°S
IFS T+12 cross section along 122W showing ice (blue) and liquid (red) water contents (log scale)

and temperature (black contours)
Yy SSECMWF
A" 4

ECMWEF physics seminar 4 Sep 2015




Cold air outbreaks — SLW detrainment improvements
Thanks to Richard Forbes and Katrin Lonitz

CERES Net TOA SW discrepancy before CERES Net TOA SW discrepancy after
improvement improvement

Wm'SP'-2' S PR
B Hpbase "GolRSE5E 808

Just as important in the NH as in the SH
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Biases at 183+3 GHz

sensitive to mid-troposphere humidity and scattering from frozen hydrometeors

Monthly mean bias December 2014 [K]
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Insufficient scattering in radiative transfer model?
Insufficient convective ice/snow particles in IFS physics?

ECMWEF physics seminar 4 Sep 2015 Slide 49 —AECMWF
A 4



Insufficient scattering (i.e. perhaps insufficient frozen
particles) in tropical convection?

NO One of dozens of constraints
on the tuning: the 183+7 GHz

- “Snow” scattering is tuned to the monthly mean bias [K]
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Why should modellers care about data assimilation?

® Cloud and precipitation observations are now routinely
constraining NWP models:

- Moist parametrisation “upgrades” really have to work — there’s fewer places
to hide now!

- Cloud and precipitation observations can guide these upgrades

- Ajoint activity for modellers and observation specialists:

Liquid phase, low microwave frequencies: radiative transfer models
are relatively insensitive to physical assumptions - good confidence to
attribute of biases to the forecast model (e.g. SLW in CAO, marine SCu)

Ice phase, high microwave frequencies: far more tuning and physical
assumptions required - much more difficult to attribute biases
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Why should modellers care about data assimilation?

® Forward simulations (NWP) versus retrievals (traditional approach)
— see also Andrew Gettleman’s talk

- Climate mean versus instantaneous comparisons

- Inretrieval space, all the assumptions, errors and sampling limitations are
completely hidden

- In observation space, assumptions are clear (e.g. ice hydrometeor shape and
size distributions)
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Why should modellers care about data assimilation?

® Variational cloud and precipitation assimilation depends on moist
physics tangent linear and adjoint models

- We need to keep maintaining the TL and adjoint models

- No, they are not necessary in ensemble data assimilation, but it is so far only
in 4D-Var that we see routine operational cloud and precipitation
assimilation with benefit to forecasts

= Ability of incremental 4D-Var to handle nonlinearities?
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Some other cloud and precipitation assimilation
activities:
® Operational at ECMWEF:

- Overcast infrared assimilation

- Assimilation of ground radar and in-situ rain-accumulations
® |In development at ECMWEF:

- EarthCARE assimilation (Marta Janiskova)

- All-sky infrared assimilation

- Ensemble approaches to cloud and precipitation assimilation
® Elsewhere:

- Assimilation at visible wavelengths

- Ensemble assimilation
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