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Coupling between clouds and their environment

< Clouds can be viewed in many different ways

<> Clouds cannot be coupled to their environment with a single physical law

Using observations to constrain models

< Good models have been built with few, imperfect observations

< Observations can be used as input for models, but also to inspire models and
validate models in qualitative ways
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Outline

1. Excursion into the past:
three examples of successful advances in understanding and modeling the coupling
between clouds and the environment through observations

a. Clouds as radiative entities
b. Clouds as turbulent multi-phase flows

c. Clouds as a heat source

2. Exploring new pathways:
an example of using state-of-the-art remote sensing to find constraints on cloud
behavior for models
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radiative entities

1. Excursion into the past:

a. Clouds modulate electromagnetic radiation
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Modeling Earth’s energy budget radiative entities

The first time clouds were considered in a climate model, they were prescribed as a
constant

100%  incoming solar radiation

top of the atmosphere

Cloud albedo =0.5

Cloud cover =52.5%

early studies

Arrhenius (1896)
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Modeling Earth’s energy budget radiative entities

Cloud albedo = 0.67 Cloud cover = 55%
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Modeling Earth’s energy budget radiative entities

Planetary albedo of 0.43 higher than the dark side of the moon suggests

astropixels.com

Fritz (1949), Houghton (1954), London (1957)
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Modeling Earth’s energy budget radiative entities

Planetary albedo of 0.43 higher than the dark side of the moon suggests

0.35 100%

top of the atmosphere
31%

17%

astropixels.com

48%

early studies
Fritz (1949), Houghton (1954), London (1957)
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Modeling Earth’s energy budget

DEPENDENCE OF EQUILIBRIUM TEMPERATURE OF
EARTH'S SURFACE UPON THE CLOUDIMESS AT

VARIOUS LEVELS
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F1G. 20. Radiative convective equilibrium temperature at the
earth’s surface as a function of cloudiness (cirrus, altostratus,
low cloud). FB and HB refer to full black and half black,
respectively.
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TasLE 1. Cloud characteristics employed in radiative
convective equilibrium model.

Height
Cloud (km) Amount Albedo
High 10.0 0.228 0.20
Middle 4.1 0.090 0.48
Low
top 2.7 0.313 0.69
bottom 1.7

Manabe and Wetherald (1967), Schneider (1972)
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Modeling Earth’s energy budget radiative entities

Studies in the pre-satellite era were quite successful at estimating the planetary albedo.

0.35 0.29

100% 100%

top of the atmosphere
31% 23%

17% 23%

48% 48%

early studies modern studies
Trenberth (2009)
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Modeling Earth’s energy budget radiative entities
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The clouds missed in early observations ended up being optically thinner.
Early observations were remarkably good at estimating the zonal distribution of
cloudiness, which tells us that clouds are tied to the large-scale circulation.
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turbulent flows

1. Excursion into the past:

b. Clouds are a turbulent dispersion of condensate
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The bubble/plume cumulus models turbulent flows

Clouds were the prototype of convection in a fluid, against
which theoretical and laboratory studies could be tested
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Challenged by the first field study of clouds turbulent flows
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Challenged by the first field study of clouds turbulent flows

.

“Cumulus clouds, like people, go through a life cycle;
they are born, grow to maturity, age and die.

Unlike people, however, the the fatter they are the
longer they live, and the taller and more successfully

they grow.”
The Thunderstorm Project - 1946
1 dMm,
E =
M, dz

M_ = cloud mass

Malkus (1953)
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heat source

1. Excursion into the past:

c. Clouds as a heat source
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The heat balance in the equatorial trough zone heat source
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The “hot tower” hypothesis heat source

A relatively small sample of about 1500 - 5000 undiluted cloud "towers"
(cores) is responsible for upward heat transport

Riehl and Malkus (1958), Malkus (1958)
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Clouds are coupled to the general circulation of the atmosphere

Clouds couple radiative processes to turbulent and dynamical flow

NASA - MODIS
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From fixed distributions of cloud to cloud parameterizations
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Current generation of global models

< Include all the processes through which clouds couple to their environment

< Many of those processes still occur on scales smaller than the model grid and are
parameterized

< These parameterizations have grown increasingly complex — with many parameters
or “disposable constants ”

< These parameters are often not observable (or used for model tuning)
Do parameterizations collectively exert the right effect?

Can we accurately predict how changes in clouds forced by increasing greenhouse
gases help mediate global warming?
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Uncertainty in climate sensitivity lies in different cloud effects

c\III_I
&
P 1.27 — L
= CNRM-CM5
\¢ IPSL-CM5A-LR
o MPI-ESM-LR
E 0989 — MRICGOM3 e
é' L NCAR-CAM4 A
S =
= <
2 > o
A
a & L A
= -
= 052 —
£ . Lo
i — o
» 8= MA
Z 033 — e
LLJ O
wn
[ 11 |
3 RN =3 3 8
S & P -
CLOUD EFFECT PARAMETER
>
change in cloud radiative effect
Max-Planck-Institut 21/34 Cess et al (1989), Medeiros, Stevens & Bony (2013)
flr Meteorologie




Changes in low-level clouds dominate modeled spread
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2. Exploring new pathways:

Do modeled shallow cumulus — one of climate’s uncertain low
cloud regimes — respond to changes in their environment in the
same way they do in nature, in our present day climate?
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A single-point comparison at high resolution

The data:

3 years of cloud, rain, temperature and humidity profiles measured at
the Barbados Cloud Observatory (BCO), situated in a typical trade-wind region,
representative of the open ocean

The model output:

30 years of single time step output at one grid point upstream
of Barbados, from the ECMWEF Integrated Forecast System and CMIP5 models




A single-point comparison at high resolution
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Differences in the low cloud profile between seasons are only modest,
but there is less cloud at the inversion in Summer

Winter

2. cloud top
Summer

1. cloud base
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Cloud near cloud base dominates total cloud cover, whereas cloud near
cloud top dominates its variance
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Why might cloud base cloudiness vary little in nature?

inversion layer

cloud layer

L AN transition layer: LCL / mixed-layer top

well-mixed layer
— —= —— e

lllustration adapted from Neggers (2006), Nuijens et al (2015)

See also Stevens (2006), Fletscher and Bretherton (2004), Bellon and Stevens (2013)
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Why might cloud base cloudiness vary little in nature?

lllustration adapted from Neggers (2006), Nuijens et al (2015)

See also Stevens (2006), Fletscher and Bretherton (2004), Bellon and Stevens (2013)
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Why might cloud base cloudiness vary little in nature?

LCL is lowered more mass flux
lowers mixed-layer top

lllustration adapted from Neggers (2006), Nuijens et al (2015)

See also Stevens (2006), Fletscher and Bretherton (2004), Bellon and Stevens (2013)

Max-Planck-Institut 29/34
fur Meteorologie

@




Models reproduce the shallowness of the trade-wind layer and the
modest seasonality, but differ in the details
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Models have stronger than observed relationships with boundary layer
humidity and temperature lapse rates

mixed-layer humidity =~ temperature lapse rate
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Models have stronger than observed relationships with boundary layer
humidity and temperature lapse rates
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Some models effectively reduce cloud near cloud base as more cloud

forms further aloft (and moisture is mixed across a deeper layer)
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Concluding remarks
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Behind modeled behavior appear to linger relationships between low-level
cloudiness, relative humidity, the stability of the lower atmosphere and the large-
scale vertical velocity, which separate zonal patterns of cloudiness and inspired early
cloud parameterizations.

Because these parameters do not reflect the dominant mechanisms that control
cloudiness on short time scales, they might lead to overly strong dependencies on
the large-scale flow.

The larger variance in models on short-time scales has implications for the
calculation of radiative fluxes and heating rates.

Observations are needed as (quantitative) input and validation for models, but can
also be used to inspire models, or for finding evidence for modeled behavior in
nature

Max-Planck-Institut 34/34
fur Meteorologie



