Land Surface Processes and
Interaction with the Atmosphere

Paul Dirmeyer

Center for Ocean-Land-Atmosphere Studies
George Mason University
Fairfax, Virginia, USA

. N

U UNIVERSITY

ECMWF Annual Seminar — 3 September 2015 P. A. Dirmeyer




Boundary Layer Modeling is Important!

* But what lies beneath the boundary layer?

—A: the Earth’s surface

* What surface is there where people live?
—A: Land
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The Role of an LSM

Vis-a-vis the Atmosphere:
* Absorb and emit the right radiation
* Provide the right drag to the flow

* Partition net radiation properly between sensible heat flux,
latent heat flux, and ground heat flux

e Supply the right constituent fluxes; water (goes with latent
heat flux above), carbon, etc.

But right and proper depend on scales, model assumptions,

systematic and random model errors, etc.
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Outline

* Coupled land-atmosphere processes
e Validation issues for land surface states and fluxes

* Going Forward
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* Coupled land-atmosphere processes
e Validation issues for land surface states and fluxes

* Going Forward




Coupled Feedback: Why Land Matters

* The feedbacks in land-atmosphere systems are rarely constant,
but vary with space, time, and conditions.

* Thus feedback is often a function of land and atmospheric
state variables, making it difficult to diagnose (nearly
impossible from observations).

* One approach: collect large amounts of output from complex
climate model sensitivity experiments.

* The concept of weather/climate predictability from the land
states is predicated on the assumed existence of feedbacks,
making this an important subject of current research.
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Proving impact of L-A feedbacks

* Usually impossible to do attribution
of weather or climate events from
observations
— Easy in models but do models mimic

processes correctly?

 BUFEX — a rare example of cause
and effect tied clearly to land
conditions (right). ‘ e

* But not usually so obvious —thus g S | :

we rely on carefully developed Western Australia — depending on
statistical metrics conditions, clouds form preferentially on

one side or other of “Bunny Fence.”//
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Modern Land-Atmosphere Paradigm
* Coupling

— When and where is there an active feedback
from land surface states to the atmosphere?
— Two-legged: land state to surface flux; surface
flux to atmospheric properties/processes.
* Variability
— A correlation results in a significant impact only
where the forcing term fluctuates sufficiently in
time.
* Memory

— If the forcing anomaly does not persist, the
impact will be minimal.

Z
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Predictability and Prediction

eLand states (namely soil moisture™®) can provide predictability
in the window between determlnlstlc (weather) and climate

(O-A) time scales.

* The 2-4 week
“subseasonal” range
is a hot topicin
operational forecast
centers now.

* Active where we have

Atm.ospr / /

(Weathpf‘ ~And good models!
~And accurate analyses!

—aliu

Predictability

™, R \ .
eaﬁ\\\&mate”)

sensitivity, variability | e
and memory. ~10 days ~2 months Time
*Snow and vegetation too! Z
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WE Global Land-Atmosphere Coupling Experiment

° 12 Weather a nd Climate JJA Landtphere Coupling Strength, Averaged Across AGCMs

models differ in their land-
atmosphere coupling
strengths, yet “hot spots”
emerged in transitions
zones between arid and
humid climates.

* These largely correspond to
major agricultural areas!

* Thus, places of intense land
management are also

_ “Famous” figure from Science paper which became used (and over-
where atmosphere is very used) to justify the role of the land surface in climate.

sensitive to land state!

Koster et al. (2004,
Qripnrp) Z
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Feedback Via Two Legs

e GLACE coupling strength for summer soil moistureto —
rainfall (the “hot spot”) corresponds to regions where
there are both of these factors:

* High correlation between daily soil moisture and
evapotranspiration during summer [from the GSWP
multi-model analysis, units are significance
thresholds], and

e High CAPE [from the North American Regional

Reanalysis, J/kg] ]\ —
AP 2 ASM = AE - AP

—

~
Feedback path: Terrestrial leg Atmospheric leg
200 400 800 1200 1600,
— COLA
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Arid regime: Coupled Feedback LoOp Humid regime:

ET (mostly surface P T Small variations in evapo-
evaporation) is very ALl oy ration affect the

sensitive to soil conditionally unstable
wetness variations, Evap atmosphere (easy to trigger

but the dry clouds), but deep-rooted
atmosphere is Soil vegetation (transpiration) is
unresponsive to small : not responsive to typical

) P Moisture " resp 0P
inputs of water vapor. soil wetness variations.

—Jn_between, soil wetness sensitivity—
and atmospheric “pre-conditioning”
both have some effect.

Arid Humid

W—-ET ET—-P

ETfP W%ET

z
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Regimes

 PBL model runs over four other

sites from arid to humid climates

established the following
categories:

e Atmospherically controlled
regimes:

— Air too dry to rain
— Profile too stable to rain

Atmospherically
Controlled:

Artmospherically Controlled:
Too dry for ruin

*

Dry Soil
Advantage

—

~ i
I Trans
Region i

S

L B S

I" - - s
i

Too stable for rain . A

: Wet Saoil '

i Advantage i

L

ﬁ --------- F - F
Atmospherically Controlled:
Rainfall over wet or dry soils
=200 0 200

CTP (Jkg)

— Moist and unstable — rain occurs regardless of soil moisture

Soil Controlled

— High CTP, easy entrainment, builds deep boundary layers; convection
favored over dry soils with large sensible heat flux.

— Moist atmosphere, convection favored over wet soils.

Findell & Eltahir (2003a,b: J.
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Categorized by Region

e All of the radiosonde sites in and around CONUS are assessed
based on their climatologies of CTP and HI

Regional Categorizations

Low*

S54°N A

48°N 1

con Region 3

42°N - oo

........

36°N 1

ON -

0N o Armospherically
Conrrolled Region

7 Negartive Feedback

Region

~ ol :
P (s
24°N 1 ¢~ N\ Positive Feedback % —— ————
S? Region

Transitional Region

130°W 120°W 110°0W 100°W 90°W 80°W ) 700W P
Findell & Eltahir (2003a,b: J. ~
~ Hydrometeor.) = LA
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Arid regime: Neg ative Feedback Humid regime:

Dry air must be lifted P o Moist air can more easily
great distances to recipitation form clouds with a low
cool enough to form cloud base. Usually
clouds — strong SH sensible heating is in short
sensible heat flux can supply when cloudy (and
build necessary deep Wet | Dry possibly rainy), b.ut not
turbulence and | Soil Loop is Soil when.clear. Again, a
generate convection. broken negative feedback.

—_If clouds form and precipitation —
occurs; it shuts off the land-strface
heating that drives the convection.

Dry Soil—-SH Moist Air—Cloud

Arid When the clouds clear, the heating Humid

: can start anew. _
Dry Alrw T~ Wet SOI|@

z
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Observations say otherwise?

Shading: percentile of observed variable (mean soil moisture
contrast) given no feedback

60° N i ’,'7** 40
30° N+ ?—0 0 %oo
3 2
w
Equator+ e 3 LY 1o
-0.4 0 04
AS (fractional saturation)
30° S- - y AMSRE | °
60° S+— - - i - - E":-“ —
180 120°' W 60° W 0 60° E 120° E 180 ‘2}3 /"‘T\: =
o / "\
[ j— | Y. L
_ 1 5 10 90 95 99 251 6 o
Rain over Percentile Rain over AS (m?® m-3)
drier soil wetter soil
Apparent preference for afternoon rain over drier soil
Far fewer blue pixels than expected by chance
: : . : Tayl . (2012;
Signal strongest in Africa and Australia R
7 ;—
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Preference for afternoon rain

Statistics of 554 events in “TEvent i
this region (5° x5° ) contrel -
Rain over drier soil found —
more frequently than ~ 4
expected 4 Oi
Re-sampling indicates K}
probability of this result
occurring by chance 0.2% N .
In fact, mesoscale o AS o
circu Iatic?ns at V‘fet/ dry octueen raing and o sainy pCls
boundaries are important Rain over drier soil  Rain over wetter soil
(Taylor et al. 2011; Nature Geo) Z
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Reconciling Koster & Taylo

I

Perspective

Typical rainy cases

Temporal coupling:

* Part of the difference may be due to Ralns when condiions are T
spatial scaling. 7 'III'I::::

* GLACE picked up on large-scale teﬂ‘m —
coupling, where correlations and Fane wnera contions ap
feedbacks are positive. / :,H,II

* Taylor picked up on small-scale spatial L
coupling that occurs sub-grid in weather |wntpespeoive:
and climate models. heerogencous, i {I:”:II:I,;

* They can coexist in nature, but not in }m;mm _"""'_
models that parameterize convection ~ Sote
conventionally. Guillod et al., (2014; Nature T ,
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GLACE-2

* Once we established in GLACE that weather and climate models
exhibited coupling and feedbacks between land and atmosphere, the
next step was to examine the predictability and prediction skill that
could be gained from accurate initialization of soil moisture in seasonal
forecasts.

* GLACE-2 was designed as a prediction experiment — 10 years (1986-
1995), 10 2-month forecasts per year (begun on the 15t and 15t of
April, May, June, July and August), each forecast is an ensemble of 10
members.

* One case uses “realistic” soil moisture initialization (from offline GSWP-
2 simulations or similar), the other case uses “unrealistic” (randomized)
initial soil moisture.

e 10x10x10x2 = 2,000 forecasts per model and 12 models!

Koster et al., (2010; GRL) (2011 Zz

JHM) — [A
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GLACE-2:
Series 1: Experiment Overview

‘ Perform ensembles
Evaluate

of retrospective ‘ forecasts
| seasonal forecasts against

I observations

I Prescribed, observed SSTs I

realistic initial land surface
states

states

‘ realistic initial atmospheric

‘ Perform ensembles —
. valuate
of retrospective ‘ forecasts
seasonal forecasts i
realistic initial ‘ against
' observations
atmospheric states ‘
I Prescribed, observed SSTs I
=
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GLACE-2:

Experiment Overview

Step 3. Compare skill in two sets of forecasts;
Isolate contribution of realistic land initialization.

_ _ Forecast skill
Forecast skill, — Forecast skill, due to land

Series 1 Series 2 initialization

* The 2-4 week “subseasonal”
range is a hot topic in operational
forecast centers now.

* Land surface data assimilation /
initialization has a lot of promise
to improve such forecasts.

Atmosphere (Weather)

Predictability

Land (???)
Ocean (Climate)

10days 2 months Time

=
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GLACE-2 Multi-Model Analysis

Land Impacts on Air Temperature Forecast Skill

| Rea.listic soil 1630 days te2d time (days) 5 4o 46-60 days
moisture o : 8
initialization B
improves g
forecasts. S
* Greatest é
improvements "L
over North  ——%
America — data =

quality effect? ' '
- [ \ \ \ \ \

2 .
rZ correlations S R R
055705 025705 0,70, ~05,70,.%05 05

Model: Multi—model Analysis  Year: 1986—-1995 Obs: Hadley
Koster et al. (2010; z

GRL) [A
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* Garbage in — garbage out.

— Need good meteorological forcing

data as input to these “offline” land

surface models, especially rainfall.

— Greatest improvements in forecasts
with “realistic” initial soil moisture are
where there is coupling & variability &
memory & high rain gauge density!

16-30
days

10.0

(=]
T IIIIIIII Ol |IIH|I|
L4

0.1

2m Temperature Forecast Skill Improvement

Land Data Assimilation

0.0

e

1000

100

T I'|'IIIII|

—]

o

T
-

— Land data assimilation still not

assimilating any data — working on it.

Koster et al. (2011.:

GPCP Precipitation Gauge Density ——

0.100

Land-Derived Predictability ——
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Soil Moisture Controls on Evaporation

e Over many parts of the world, there

is a range of SM over which _
evaporation rates in(de)crease as oo pt
soil moisture in(de)creases (soil ;’;
moisture is a limiting factor — _ L g D
mOiSture ContrO”ed)' % 1204 :"'t‘ ‘.ILittIesensitivityof evz;porationto
. . — '-"‘ * soil wetness across a wide range
e Above some amount of moisturein g = :
. . © w 't
the soil, evaporation levels off. T | sensitviyor |F
, : 1 ereportion 0% Noah (90-94W, 36-42N)
e |In that wet range, moisture is of it i
. . the dry range |}
plentiful, and is no longer ) near the g
o i

controlling the partitioning of fluxes "% & @ & & & & & @
(it’s energy controlled). Soil Wetness
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This Affects Predictability in GLACE-2

* Soil moisture anomalies that
push the local L-A system
toward the regime of greatest
sensitivity generate biggest
improvements.

 When a desert area becomes  Driest Half of

moist (A), it gains predictability,
and thus skill.

* When a humid area becomes

Anomalies

Wettest Half
of Initial Soil

Anomalies

Moisture--

Loid

Initial Soil
Moisture-

O

dry (B); it gains predictability, Temperature Forecast Skill, Days 31-45
: o o ey
and thus skill. v R R
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US Hotspot Weak on Memory?

SM Forecast Skill(LA/0) Quality of Initial SM(LA/O)
s -

e GLACE-2 found increased
forecast skill from soil
moisture initialization in
subseasonal forecasts,

but not centered over e
T Deae—
the ”hOtSpOt”, 02 025 0.3 035 04 045
SM Memory(Months, GLDAS) Spacial Correlation (CONUS)
0.95r d "___\—0.65/\
* Reason may be a lack of DS+, _ S
persistence of anomalies ' :
there, compared to &
regions further west. =
65 ’ ............ losssaasananans liassssaansaass 0.4 8
B 1-15 16-30 31-45 46-60
—— s 12 ;| S RN Lead Time (Days)
Guo, & Dirmeyer, (2015: o e
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Land Surface Impacts on Atmospheric Predictability
(zolid lines for LANO case, dotted lines for ANO case)

f GLACE-2 Predictability

* Box over US Great Plains.
Soil moisture memory is
high during spring and
summer.

In early spring soil
moisture does not control

- —_

Predictability

1 Corr(ET,5M)

0.4 L <

0.8 ~Evaporation

Predictability  Predictability
Q

~-Temperature

g ET.
5 Late spring and summer, all
R pieces are in place.
2 The impact of soil moisture
:Ej l e T R s : On tem peratu re a nd preCI p
o4 o5 o8 07 08 09 10 1 maximizes, predictability
Month " ”
Model: COLA AGCM Years: 1982—2006 rebounds
Guo et al. (2013: J. ~
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Heated Condensation Framework (HCF)

 Atmospheric “leg” of coupling
 Quantifies how close atmosphere is to moist convection
 Does not require parcel selection

e Uses typically measure quantities
* Is “conserved” diurnally

* (Can be used any time of year or any time of day
* Make prescriptive statements such as:
 “Land surface unlikely to produce convection”

 “Require X increase in lower atmosphere heating and Y
additional moisture for triggering convection today”

i

Tawfik & Dirmeyer (2014; GRL) y
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A Sounding

* Typical meteorological
profile of temperature
(black) and dew point (blue)

400

S 500
through atmosphere. g

* Heat and moisture inputat * .

ground modifies this profile.
850
1000
-1IO (I) 1I0 2IO 3IO 4IO
Temperature (C)
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LCL

e Lifting condensation level
(LCL) based only on 2m
temperature and humidity.

400

500

e Easy to calculate, data
readily available, but does
not take into account the
stratification of the 850
atmosphere above. 1000

Pressure (hFa)

700

* In this case, suggests a very S
IOW CIOUd base Temperature (C)
=

5 UNMIVERSITY
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HCF Framework

* Let’s add heat at surface,
raising surface temperature
and mixing adiabatically
upward through
atmosphere.

400

500

Pressure (hPa)

* We increment O upward, see 70
where dry adiabat intersects
sounding = Potential mixed

850

level. 1000
-10 0 10 20 30 40
Temperature (C)
— COLA
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Potential Mixed Level ..

* Mix the moisture through
that depth to a constant
specific humidity

* At the “potential” mixed laye
(PML) we can see that we
have closed the deficit of
humidity

Pressurd (hPa)

400

500

700

850

/ /
/ /
~ PML--
F /

/ /
X X X X ¥ XX

. O . O . // / q/mix//
Saturation deficit at PML: qpee AV VIRNAG. Va9
= Qsat — Amix . . . . . .
-10 0 10 20 30 40
Temperature (C)
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BCL

300
* Add heat and mix until qp=0
400 . , . , :

* This is the buoyant 4 Saturated? |,
condensation level (BCL)— & so0 ( Yes! '
accomplished with surface ¢ . /N &
sensible heating only. & / /BCL=~—

) 700 g A

* Note difference from LCL /N

850 |/ /// /// /
, // ,-/ LC/L -/,
1000 |- ¢) & K v 5 GBM
—1I0 (I) 1IO 2IO 3IO
Temperature (C)
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Moisture vs. Heat

e Surface sensible heating grows the
boundary layer, mixing moisture
vertically.

e Added moisture from latent heat
flux can make saturation easier to
reach (lowering the cloud base).

e Can think of B, and gy instead as
SHpgr and LHpg! 850

e LH and SH draw from same energy
(net radiation) — which is more
efficacious to form cloud?

* How would another W/m? get you
closer to convection? Depends on
profile, circulation & land surface.

400

500

Pressure (hPa)

700

1000

0 10 20 30 40
Temperature (C)

Tawfik et al. (2015a,b; J.

Hydrometeor)

Z
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A Map

 Summer average
diurnal cycle of
the energy
advantage
“angle” (E 4

degrees) from

1200UTC to 0300UTC. Contours are from NARR Al
and markers are from obs IGRA soundings only
at 0000UTC.

* Blues = moisture advantage; yellow/red = 7 |
heating advantage A AT A

LHger (MJ m™2)

z
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HCF as a Parameterization

* This has been applied

NCEP CFS) as a
parameterization of
convective triggering.

* Promising results, not just
for diurnal cycle, but also
climate time scales (e.g.,
Indian monsoon onset in
NCEP/CFS coupled O-L-A
forecast model)

within GCMs (NCAR CESM,,.

SN

a) Onset (TRMM) b)) Onset (CTRL) c) Onset (HCF)

1853

180

165

145

140

120

TO0E 7SE BOE BSE S0E TOE 7SE BOE BSE S0E 7TOE 75E 830E BSE j: L]
d) Onset BIAS (CTRL) e) Onset BIAS (HCF)

30N

25N

20N

15N

10N

5N

F0E 7SE 80E B5E 0E FOE F3E BOE B5E S0E

Bombardi et al. (2015; Clim

n.) /
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Outline

* Coupled land-atmosphere processes
 Validation issues for land surface states and fluxes

* Going Forward




Variability and Memory

* We will continue to talk mostly about “coupling” between land-
atmosphere, and metrics to quantify it.

But let’s take a moment to consider “variability” and “memory”
as well:

Variability: Standard deviation (soil moisture, fluxes,
precipitation, etc.) (daily, monthly, interannual, etc.)

 Memory: Lagged autocorrelation (soil moisture, snow, NDVI, etc.)
(daily, monthly, etc.): /=t where In(r) = -1.

= UNIVERSITY
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Soil Moisture Memory and Error

* Lagged autocorrelation of soil moisture drops exponentially
with time: r(f)=e ", / can be estimated from correlations.

* Alinear regression of In(r) vs t does not pass through the point

(t=0,r=1) due to measurement error.
e RMS of measurement error: :S

r(0)=1-a

Ja/(1+a)

° i . . 2 A2 2
Relative measurement error: Iﬁ’/s, S .. =S"+d

Delworth & Manabe (1988, 1989; J. Climate)

Vinnikov & Yeserkepova (1991; J Climate)
Robock et al. (1995; J. Climate)

Vinnikov et al. (1996; JGR)

Vinnikov et al. (1999; JGR)
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o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E IS
Xample -Oj \\
_ TN

=
[

+ /=twhere In(r) = -1. e N
e NG

e Random errors in obs
reduces apparent 35 linear (Obs with ero
memory! 28 (days)

* |n other words, the error characteristics of soil
moisture instruments affect estimates of memory.

M [
un

In(autocorrelation)
(2%}

[
w

W
un

1
IS

* Model output effectively has no measurement error
(just truncation error; perhaps the only sort of

“perfection” models can approach!)

= UNIVERSITY
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0.3 0.35 0.4

Error Profiles

~~ARM
-+~ AWDN
4~ COSMOS

* Aggregate data from a variety of soil
moisture networks over US from
International Soil Moisture Network
(ISMN; TU Wien) and North American
Soil Moisture Data Bank (NASMDB;
Texas A&M) vertically interpolated to
Noah land model levels analyzed to
estimate g and thus g/s.

* Some networks appear in both data
sets — slightly different processing,
date ranges, included stations — a
good sanity check.

© PBO-H20
—+=SCAN

Depth (meters)

—+=SNOTEL
+ SOILSCAPE
~+=USCRN

I S M N © USDA-ARS

=H=All

035 0.4 0.45 j—'—AmeriﬂuX
‘ ‘—D—ARM
+-AWDN
—+—=CHILI
£-COSMOS
-+ DEOS
-+~ ECONET
| —+MAW-Mo
4 ~+=MAWN
| =+~ NOAAHMT

=4
o

038
OK Meso
| =+=SCAN
=+=SNOTEL
| =+=SDAWN
NASMDB | | ~uaw
- | =+=WTx Meso
“Xe=All

z

Depth (meters)

= (0OA N

Center
=
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Error Profiles

* GPS and Cosmic-ray approaches
(essentially near-field remote
sensing) have large random error.

* In-ground sensors do better — heat
dissipation sensors (e.g., ARM-SGP,
Oklahoma Mesonet) have
consistently low random errors.

* Dielectric sensors are highly
variable (generally lowest cost) but
can produce lower errors than

heat-dissipation.

Depth (meters)

Depth (meters)
« o

~~ARM

-+~ AWDN
4~ COSMOS
© PBO-H20
—+=SCAN

—+=SNOTEL
+ SOILSCAPE
~+=USCRN

I S M N © USDA-ARS

—=CHILI
£ COSMOS
|+ DEOS
-+~ ECONET
| —+=MAW-Mo
~+=MAWN
|+~ NOAAHMT
OK Meso
| =—+=SCAN
——SNOTEL
| ——=SDAWN
~+=USCRN

NASMDB

| =+=WTx Meso
“=Ne=All

z
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Remote Sensing

e Can apply to satellite data as well.

* We get some “interesting”
accuracy hot-spots that seem to
correspond to ground-truth cal-
val sites! Suggests need much
more ground truthing for satellite
data than is usually done.

SMOS

AMSR2

* Preliminary results — more to
do....

0.1 015 0.2 025 03 035 04 045 05 055 0.6

Courtesy: Sujay Kumar (NASA/GSFC) //
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PLUMBER

e PALS Land sUrface Model Benchmarking Evaluation pRoject
(PLUMBER)

— where PALS = Protocol for the Analysis of Land Surface models (PALS;
Abramowitz 2012; pals.unsw.edu.au)

 Compare today’s LSMs to some very basic statistical regressions
(against SWyon (+T, (NL+q,))) for estimating surface fluxes —
who validates better?

* This is a “no-brainer”, right? It must be the physically-based,
complex land surface models. Right?

* RIGHT?!

Best et al. (2015; J. Z

rryu Ulllct.) LA
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Results for 13 LSMs

* Avereged over 20 FLUXNET sites, Penman-Monteith always last.

* Manabe bucket usually second worst.

e Sadly, LSMs often
beaten by basic
linear
regressions,
especially for
sensible heat!

e A bit unfair®, but
still sobering.

Average ranking

1

Common statistics

I I I I I I I I I I I I I I I I I I I I I I I I I I
001 var ragression ... 2 var regression [7]....[7]3 var regrassion y¢_._. 3¢ Manabebucket | ... _4 Panman Monteith xx Land Surface Modsl
1 1 1 1 1 1 1 1 1 1 1
CABLEZ ICABLE? §11 |CHTESSEL [ICOLASSIR 11584 8l IISBA dF  LJULESSA  LJULES31 shPIMOSAIC  IMosh27d1 | Nbahd2 I Noahs.a 10RCHIDEE
1 | 1 1 1 1 1 1 1 1 1
1+ 1+ 1+ 1 1 4 1+ 1 1+ 1 1+ 1
—+‘-._ 1 + +, 1 o ke 1 +'-._ 1 +'-._ S 1 +"., 1 +"-, 1 +'*.‘ 1 +‘-._ -
" 1 ", | R | a1 | . 1 RO | - 1 R 1 -,
o + “+ b E + * o + BT A + * +
1 | 1 1 1 1 1 1 1 1 1
b A .. , X Mo WK - x.. . ..
,,,,,, X e B4 1 Horiiye | . 1 1 1 1 1 - 1
RoRe % % XI x| xl>E X, X lx:.'""XIX X xl; ! —
., 1 X . 1 1 1 1 1 1 ", [ 1 1 1
e 175 o bk ¥ e ! 1 % I ¥ ¥ [N -3
X ! R R : ';.~.:‘.'X ! j:-»:§ ! _.‘-.;'X ! 1@;;‘3 ! “oR - R ! ,Z:«:_;§ ! =R ! R
_6' P Ey el L 1 @ 1 G e ¥ 9 1 6 1 1 @ 1 @:“'"-"' 1 G
A |Jﬂ¥ﬂx|A¥|J’!i 1 & XIA DS |§"qu -3 X|ﬂ%—
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
pol ._.-E VHE By 3y S H ‘,.-EI I o __.-E' I Rl ".-D I ‘_"EI
Rl L - S e A
1 1 1 1 1 1
1 | 1 1 1 1 1 1 1 1 1
1 | 1 1 1 1 1 1 1 1 1
1 1 1 1 ! 1 1 1 1 ! 1 L1 1 ! 1 1 1 1 1 1 1 1 !

Q, 00,0 Q0 9,0 0,0 Q, 0 Q, Q Q Q. 9, & Q, Q Q, Q Q, Q Q,

*e.d., regressions have no diurnal cycle; obs don't perfectly close energy/water balanceg=

whnile models do.
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Outline

* Coupled land-atmosphere processes
e Validation issues for land surface states and fluxes

* Going Forward




Metrics

* PLUMBER an example of benchmarking, but a number of
physically and statistically based metrics have been derived to
validate coupled land-atmosphere model behavior, and if
properly applied, diagnose error sources and shortcomings.

* Key element of a useful metric is that it is measurable in
nature.

* |ssue: Necessary measurements are still sparse in space and
time. Really only beginning to be able to pursue this properly.

Z
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Missing Processes

e Example: hydrology with
low connectivity

— Many locations have B E 5
fractured soils, permeable :E § E ; :
subsurface (karst) ElL :§ ;E ;5

— Isotope studies suggest 55 5 :’§=> 7 = . i
much infiltration bypasses T mé ; | - EE g
root zone, drains straight to I S e —
water table. [ [ ) [ L

o 2.4 2.4
Soil > 20 2.0 2.0

— Modeling studies show vy 2T s o 1

errors larger over karst, sfc. |\ ei i E 5 =
flux differences affect e e —
convection, circulation.

12 -1.2 1.2
16 -1.6 -1.6

:

RMSD: B Barren B Forest M SandyS Bias: HBarren M Forest M SandyS
Courtesy: Xingang
/

Fan ~
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Coupled processes matter!

* Uncoupled LSM — global BareSoil - NatVeg (JJA)
removal of vegetation
leads to an increase in  ~{®
ET over many areas. .

* When LSM is coupled to::—;'v
AGCM so feedbacks ~ *°
occur, ET decreases over.. |-s=g
most areas.

CAM+CLM

* Model developmentis ..
also a coupled problem!" ===
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Thank You
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