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Outline

 Introduction
 Physics related applications

 Does a sub-grid scheme have the correct dependency on
environmental variables? Examples:
i 2m temperature errors
. Convection

* Interactions between schemes. Example:
. Precipitation / evaporation feedback over land

. Future directions
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Evolution of anomaly correlation of 500 hPa geopotential at ECMWF
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Physics related model output

Parameters: Examples of applications:

* Wind (profiles, 10m, 100m, gusts)  Warnings, wind energy

* Near surface temperature, dew point * General forecasting, extremes

* Land surface variables: soil moisture, * Hydrology, agriculture, climatology

snow, temperature, lake variables,
runoff, turbulent fluxes, pot. evaporation

e QOcean fluxes * QOceanography, climatology

* Radiative fluxes (net, downward, diffuse, * Warnings, agriculture, solar energy
direct, PAR, UV)

* Precipitation (rain, snow, * Warnings, general forecasting
convective/large scale, super-cooled)
e Convective indices  Warnings
* Clouds (ice, water, fraction) * General forecasting, aviation
* Boundary layer height * Air pollution applications, tracer
modelling
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Day when precipitation score (1-SEEPS) drops below 0.45

36r4 (09/11/2010):

* 5-species prognostic cloud scheme

* Refinement of all-sky radiance assim.
* Convection entrainment change

* SEKF for SM and Ol for snow analysis
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Cloud verification using Climate SAF product of solar
downward radiation

Climate SAF JIA 2012 24-hour forecasts JJA 2012

Mondimensional downward surface sol_ar flux, obs, 201207

Mondimensional downward surface sol_ar flux, fest, 201207

Downward solar radiation normalized with clear sky value
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Boundary layer height

Boundary height diagnosed from sonde profiles Map of median boundary layer

and model level data using Ri-number criterion heights from sondes (dots) and
ERA-lat 12 UTC JJA
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How to develop parametrization

Parametrizations express the tendencies due to subgrid processes in
terms of resolved variables.

( Develop scheme based on: \
* Theory
*  Observations
*  Fine scale models
Dependencies are crucial, e.g.
clouds depend on RH,

\ turbulence on stability, etc./

Test extensively in:

* Single column

* Shortrange

* C(Climate

* Considerinteractions
between processes

\- Consider feedbacks

~

/

4 )

Adjust parameters on the basis
of final results (tuning / inverse
modelling / variational
optimization)

\_ J

 Some of today’s random errors will turn out to be systematic errors
in future; we are just missing or misrepresent a dependency

* The model error representation in the ECMWF ensemble system
introduces spread related to random model errors, and some of
these are hidden systematic errors
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Evolution of 0 and 12 UTC 2m temperature errors over Europe
(Bias and RMS) : Are the errors systematic or random?

T+80 Standard daviation of forecast error
T+72 Standard deviation of forecast error

2m temperature
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2m temperature errors averaged over daily 36-hr forecasts for January

=T mean et exp[CYE1R1{0001)+36-AMNO001)]); VT:20070102-20070201 12 UTC. 2T mean e exp[CY22R3 (0001 ) +36-AM0001]]; YT:20080102-20080201 12 UTC,

-Jan 2007

el

"Jan 2009

c ECMWF Annual Seminar, September 2015



The example of turbulence closure

1
Turbulence closure has a solid basis in “Monin Obukhov” (MO) ooty o
similarity. MO, “local scaling”, and observationally based stability 0.8 ‘?‘ _____ IFS
functions lead to a very simple closure for diffusion coefficientsin %] N
stable situations: %81 i\
Fh 051 % N,
ouU 1 1 1 044 L .
Ky = |I'Fu(R) =5 %7 03 -
oz z 02 IFS . __
0.1 1 |\/|O ________________________
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Ri
However, the observationally based MO functions are never used
in large scale models, because they lead to:
*  too cold nigh time temperatures
* too little surface drag. a5 _—
Why does MO not work? Are the observations wrong? _,_,.,.-r/-r--::'-"ii:-;j
-

A possible explanation is that large scale models lack “meso-scale” E) _EZ’;TSF?‘;":;@?J‘;‘;?M
variability (e.g. gravity waves, inertial waves). ol N
Houchi et al. (2010) analysed a large volume of high resolution radio sondes E sl (}
and concluded that the IFS underestimates the magnitude of vertical shear 8 7‘%\
by more than a factor 2. 2 . s .

Conclusion: < ;f.s--‘r-f'

- The effect of meso-scale variability needs parametrization o e

- Such a parametrization should be resolution dependent e Houchi et al.

5- & { (2010), JGR
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Dependence of convective mass flux and precipitation
on environment moisture

The GCSS inter-comparison of
CRM'’s and SCM’s showed that

most parameterizations have too

little sensitivity to environment

moisture (Derbyshire et al. 2007)
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CY23R3 changes to convection parameterization
(introduced Nov 2007) : stronger entrainment, also
dependent on g, and variable CAPE reduction time scale
(Bechtold et al. 2008).
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Model activity in T799 10-day forecasts

Relative activity is
model activity divided
by activity in analysis

Activity is standard
deviation of anomaly
from ERA-40 based

climatology

Relative activity
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Convection: Tropical variability, OLR spectra, MJO
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In the ensemble prediction system the amplitude of the initial
perturbations could be reduced by 30%
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Verification of ensemble prediction system
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Moisture budagets

Atmosphere: —fqdp—l——/qup—l——qudp = —FE —-P

||
Change of total column
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About interactions and feedbacks.
The example of atmosphere to land coupling through the water cycle

Land-atmosphere coupling strength (JJA), averaged across AGCMs
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Koster et al. (2004): Regions of strong coupling between
soil moisture and precipitation, Science, 305, 1138-1140.
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Moisture budget terms from ERA-Interim (June)

Total precipitation (mm/day); Month:6; ERA-Interim; 2001 to 2010 Evaporation (mm/day); Month:6; ERA-Intenim; 2001 to 2010
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June, ERA-I climatology
Average 2001-2010

e TP: Total precipitation
e E: Evaporation (up = negative)
[ J

MCNV: Atmospheric moisture
convergence
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Long integrations

 |nitial date: 20030401

« 4 member ensemble (only averages are presented,
but individual members behave similarly)

 Length: 4 months

« Two experiments with soil moisture initial
conditions (set according to local soil type):

1. Field capacity everywhere (wet)
2. Permanent wilting point everywhere (dry)
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June
Wet Dry

Evaporation (mmiday); Jun; Wet (gczp) Evaporation (mm/day); Jun; Dry {gezo)

Moisture convergence (mmiday); Jun, Wet (gczp)
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accumulated water amount {mm)
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Tentative conclusions:

Precipitation over land in summer
responds strongly to evaporation

With such a strong coupling between
precipitation and evaporation it is hard
to create anomalies
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Questions:
Does evaporation respond correctly to
soil moisture and atmospheric forcing?

Does convection respond correctly to
evaporation and boundary layer
moisture?



Meso-Gers experiment 4-Oct 1984 (flux station, South France)
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Examples of future directions

Use of observations
Inverse modelling

High resolution modelling
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Future directions 1: Use observations to optimize parameters and explore
dependencies on large scale variables

* First guess departures SSMIS 37v (channel 16) All sky radiances

* Example: Southern Hemisphere 12 UTC 19 Jul 2013
* Reduced errors in frontal regions with reduced liquid water path

SSIMS 37y first || .
guess departure fg: -

Control

40r3

Total Column
Liquid Water

40r3 -Control

135"W 20"W A5™W 0°E 45°E 90°E 135°E

NWP environment is highly suitable for parametrization —EEGz_z_M ¢~
development

Fig: Alan Geer



Future directions 2: Optimize parameters using data assimilation
techniques e.g. variational method
Solar constant evolution from fw2j fw51
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Using data assimilation is particularly relevant for large
number of parameters, e.g. global fields of land surface
parameters to characterise drag, thermal properties etc.
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Future directions 3: High resolution modelling over large areas
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Embedding a LES in a large scale model is not sufficient to represent the
energy in the meso-scale. LES simulations over large areas are needed. The
meso-scale variability is missing in current parametrizations.
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Summary

 Correct dependence of sub-grid processes on large
scale variables is crucial

 New and more quantitative knowledge about such
dependencies will emerge in future and will reduce
(what appears now as) random errors

 Good observations and advanced techniques to exploit
such data are necessary to achieve improvement

* Interactions and feedbacks are crucial for predictability
but need careful evaluation

« High resolution simulations will not only change the role
of parameterization but can also be an important data
source for the further development of parametrizations
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