
www.iblsoft.com

ECMWF Visualisation in Meteorology week 2015

15th Workshop on Meteorological Operational Systems
29th September 2015

Numeric Weather Team

Michal Weis
Managing Director

Igor Andruska

Web based NWP model
management

IBL develops variety of software for meteorological services:
• about 40% of ECMWF member/coop NMSs use IBL products operationally

Motivation - where do we come from

Processing flow

- Forecaster’s workplace
- Integrates a lot of data

& tools to create fcst
- Visualisation
- OGC Web Services

- Data collection & xfer
- Message switching
- forwarding to

upstream systems

- Web weather display
- Utilizing OGC Web

Services
- Tools for forecasters
- Widgets for public web

Visual Weather - operational
forecaster's workstation (but not
limited to) - mainly integrates &
displays observations, remote
sensing data, and - models.

Used for: for operational
forecasting, research,
study/universities.

Consequently we deal with tasks of
forecasters that depend on data
(model) availability.

Motivation - workflow & dataflow

The “right” schedule

• Build a NWP scheduler that can be operated and used
without “guru-level” IT skills for:
– ad hoc model runs by researchers, students ⇒multi-user support

– regular operational production

• NWP workflows created from predefined parameterizable
functional blocks, just like Lego
– Example of building blocks:

• “Compute COSMO single domain forecast
for initial time <T> and model domain <D>”

• “Compute WAVEWATCH III forecast for
initial time <T> and domain <D>, take
driving wind fields from model <M>”

High-level design goals

• Python API - the most important feature for IBL!

– Hard to live without API nowadays in general. End users often
require unpredicted functionality

– Allows us to implement our own extensions and facades on top
of ecFlow core

• Reliable - the most important for end-users (without much skills)

– Server is extremely stable (never crashed at IBL!)

– Reliable handling of zombie jobs

– Smooth recovery after power cuts

• Support for multi-user environments

– It is straightforward to run a separate ecFlow server instance for
each user without any undesired interference among users

ecFlow strengths as we see it

• Missing possibility to parametrize suite in runtime without
coding in Python

– Parameters: model initial time, forecast range, etc.

• Built-in commands are bit low level (for non-daily users)

– To reliably stop a complex suite (kill all running jobs +
prevent queued tasks from being executed) with
complicated triggering (e.g., nodes triggered when other
nodes abort) might require issuing a series of kills
instead of just one. This is confusing for non-IT users

– To run a node, users must distinguish between begin,
run, re-queue and restart commands. The background is
a little bit technical for non-IT users

ecFlow weaknesses #1

• Lack of stable and user friendly UI for monitoring and
control

– ecFlowview crashes a lot, complicated UI

– Output of “ecflow_client --get_state” CLI command is
hard to read

• No intrinsic support for recursion - (temporal) recursion is
very common in NWP, e.g., for:

– Continuous data assimilation

– Ocean wave model restarted from the previous run

ecFlow weaknesses #2

Building on top of ecFlow

Extended suite definitions

We extended ecFlow suite definition to
allow runtime parametrization of
tasks:

• Statements starting with #>

• Shell-like parameter expansion:

– Environment variables !

– Suite arguments %

– Cross references to other
parameters $

• Evaluated in runtime when task
starts

Recursion

• Continuous model run: run initialized from forecast of the previous run

– e.g. continuous data assimilation, warm start of ocean wave model, etc.

• We must make sure that the chain is always linked, no cold starts

– e.g. by power outages, hardware failures, maintenance, etc.

• Need to model this relationship between successive model runs ⇒
recursion

• IBL solution:

– special task in a suite (typically the first one) that

• checks whether predecessor has been loaded in ecFlow. If no, loads it

• waits until predecessor completes

Using Python API, we combined elementary ecFlow commands
into convenient macro commands with well defined behaviour
that cover vast majority of use cases:
• load-suite - loads suite definition into server, parametrizes suite (e.g.,

model initial time) and (optionally) runs suite. All in single command

• run-node - runs suite/family/task regardless of its state (OK, there are
few inevitable exceptions). If node is already running there is a switch to
stop the node first and then run again

• run-aborted-tasks - runs only aborted tasks inside family or suite -
common operation during recovery of the workflow

• stop-node - reliably stops suite/family/task in one shot regardless of
state of node, its subnodes and triggering scheme

• delete-suite - deletes suite definition from server + removes all the files
associated with the suite on the disk

Macro commands

• With Python API we created a
more user friendly version of
“ecflow_client --get_state”
command

• CLI switch to show/hide

– triggers

– labels

– events

– meters

– variables

– flags

• Use standard 16 terminal colors
to highlight node state

• Useful for checking remote
systems over slow internet lines

Monitoring ecFlow
Command line interface

• Renders state of loaded suites

• Macro commands

• Zero-footprint installation

Monitoring ecFlow
Web-based interface

Monitoring ecFlow
Email alerts

1. Sent automatically when task aborts. Contains error
message and Python traceback

2. Sent explicitly when certain conditions occur during
processing, like missing crucial observation types for data
assimilation

Monitoring model outputs

Monitoring of hardware & system

We will appreciate your comments
and welcome further questions.

Michal.Weis@iblsoft.com • www.iblsoft.com

