Interactive 3D visualization of ECMWF ensemble weather forecasts

Marc Rautenhaus(1)

contributions from Florian Ferstl(1), Christian Grams(2), Christoph Heidelmann(1), Michael Kern(1), Andreas Schäfler(3) and Rüdiger Westermann(1)

(1) Computer Graphics and Visualization Group, TU München
(2) Institute for Atmospheric and Climate Science, ETH Zürich
(3) Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen

29 September 2015, ECMWF, Reading
3D ensemble visualization for forecasting

Met.3D – improve forecasting for flight planning by use of ensemble uncertainty information and combined 2D/3D exploration techniques.
Met.3D – an interactive 3D forecasting tool

User interface elements required for forecast exploration.

time & ensemble navigation

multiple views with 2D & 3D visualization
Met.3D – an interactive 3D forecasting tool

- multiple views with 2D & 3D visualization
- time & ensemble navigation

User interface elements required for forecast exploration.

GPU based.
Outline

(1) A „bridge“ from 2D to 3D,

(2) support for (ECMWF) ensemble forecasts,

(3) interactive ensemble forecast products,

(4) future work in „Waves to weather“ – feature based ensemble visualization.

Technical specs:

- desktop application (C++/OpenGL/Linux);
- support for ECMWF ENS NetCDF/Grib;
- support for hybrid sigma-pressure levels.
Do not replace proven 2D techniques but put them into a 3D context and use 3D elements to add value.
Bridge from 2D to 3D – horizontal sections

Geopotential Height (m) and Horizontal Wind (m/s) at 250 hPa
Valid: Fri 2012-10-19 18:00 UTC (step 66 hrs from Wed 2012-10-17 00:00 UTC)

Interactively move section: fast means to explore vertical structure.

Do not replace proven 2D techniques but put them into a 3D context and use 3D elements to add value.
Bridge from 2D to 3D – vertical sections

Shadows and vertical axes for spatial perception.
Bridge from 2D to 3D – Skew-T-diagrams

Spaghetti plots for temperature and dew point
Support for ensemble forecasts

jetstream – 3D isosurfaces 50 m/s and 30 m/s

- single member
- animation over ensemble members
- ensemble statistics (e.g. probabilities)
- mean and standard deviation

\[p(v > 50 \text{ m/s}) \]
– video –
select trajectories according to ascent:

e.g. **500 hPa in 48 hours**
(interactively in Met.3D)

(Wernli and Davis, 1997)
Probability of WCB occurrence
video
Current work: Spaghetti plots and clustering

Interactive clustering of an ensemble of streamlines/trajectories

Future work: feature based ensemble visualization in „Waves to weather“ (2015-19)

[PhD position available!]
Summary

Met.3D

Bridge from 2D to 3D

Ensemble support

Ongoing research in visualization techniques
Summary

Publication: Rautenhaus et al. (2015a,b) Geosci. Model Dev. (8)

Met.3D open-source repository: https://bitbucket.org/wxmetvis/met.3d

Users wanted!
Contact me at marc.rautenhaus@tum.de
Summary

Met.3D

Bridge from 2D to 3D

Ensemble support

Ongoing research in visualization techniques

Publication:
Rautenhaus et al. (2015a,b)
Geosci. Model Dev. (8)

Met.3D open-source repository:
https://bitbucket.org/wxmetvis/met.3d

Users wanted!
Contact me at marc.rautenhaus@tum.de
Summary

Met.3D

Bridge from 2D to 3D

Ensemble support

Ongoing research in visualization techniques

Publication:
Rautenhaus et al. (2015a,b)
Geosci. Model Dev. (8)

Met.3D open-source repository:
https://bitbucket.org/wxmetvis/met.3d

Users wanted!
Contact me at marc.rautenhaus@tum.de

See Met.3D live at the exhibition!

Thank you!