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ABSTRACT

In this paper, we describe continuous (CG) and discontinuous Galerkin (DG) methods for atmospheric modeling.
We present a unified CGDG formulation for general nonlinear systems of hyperbolic equations. We then describe
the possible mechanisms available to both CG and DG for maintaining positivity of, e.g., tracers such as those
representing moist variables. In addition, we include a discussion on some of the strengths of CGDG methods such
as (non-conforming) adaptive mesh refinement and the exceptional scalability of CGDG methods on massively
parallel computers.

1 Introduction

The goal of the work being conducted at the Department of Applied Mathematics of the Naval Postgrad-
uate School is to construct a nonhydrostatic atmospheric model that has the following characteristics:
highly scalable on current (CPU-based) and future (hybrid CPU- and GPU-based) computer architec-
tures; permitting general grids such as statically and dynamically adaptive; highly efficient; high-order
accuracy in all the numerics (both space and time); unified regional and global numerical weather pre-
diction; and conservative, minimally dissipative with excellent dispersion properties. However, it should
be emphasized that the focus of this paper will remain mostly within the area of spatial discretization -
that is, how to approximate the spatial derivatives. There are many possibilities to choose from to ap-
proximate the spatial derivatives but whichever method is chosen should have the following properties:
stability and robustness, accuracy, efficiency, geometric flexibility, and long shelf-life. It is clear that
stability is paramount but robustness is a bit more difficult to understand. Here, we write it to mean that
the method remains stable across a large range of applications and additions to either physical or numer-
ical processes. One example regarding numerical processes could mean how well does a method handle
variable resolution or non-conforming grids. We generally do not know what is the sweet spot for the
order of accuracy in a method but it is easy to argue that high order is preferable to low order although
the efficiency of the method has to be taken into account. Geometric flexibility means that the method
is capable of handling all levels of refinement. For example h-refinement means that we automatically
decrease the mesh spacing size (h), while r-refinement means that we move the grid points around, and
p-refinement means that we change the order of the approximation within a grid box whenever a certain
threshold is reached. The reason why geometric flexibility is important has to do with increasing the
shelf-life of a model. For example, once nonhydrostatic models reach fine scale resolutions it may be
possible to perform simulations previously not realizable. Even at the exascale range of computing it
may be necessary to use mesh refinement to run, e.g., high-resolution hurricane/storm-surge simula-
tions. If a numerical method is not equipped to handle mesh refinement then models based on these
numerical methods may have to be rewritten in a few years after operations. Additionally, if methods
are capable of being used on one set of computers but not others then a change in the computer industry
will require rewriting models. We have seen examples of this with global methods that were ready-made
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for vector computers but more difficult (although not impossible) to adapt to distributed computers and
now Graphics Processing Units (GPUs). Since it is expected that data transfer will remain the bottleneck
within the foreseeable future, methods based on local stencils will reign supreme.

The remainder of the paper is organized as follows. In Sec. 2 the unified presentation of the continuous
Galerkin (CG) and discontinuous Galerkin (DG) methods is described for the general class of systems
of nonlinear hyperbolic equations. In Sec. 3 we discuss some possibilities for preserving positivity in
both CG and DG methods. The Nonhydrostatic Unified Model of the Amtosphere (NUMA) is briefly
described in Sec. 4 because it is the model used for developing and studying CGDG methods. Section 5
describes the non-conforming adaptive mesh refinement approach used with both CG and DG methods.
Then in Sec. 6 we describe the parallelization strategy for both CG and DG and compare their results on
tens of thousands of cores. This section also describes the on-going effort to port CGDG methods (within
the NUMA model) to GPUs. In Sec. 7 we present a summary of our findings and discuss directions for
future work.

2 Unified Continuous and Discontinuous Galerkin Methods

High-order continuous Galerkin (CG) methods were first proposed for the atmosphere by Taylor et al.
[15] in 1997 for the shallow water equations on the sphere. Less than a decade later, the first high-
order CG hydrostatic models began appearing [7, 2]. Discontinuous Galerkin (DG) methods came later.
DG methods were first proposed for the atmosphere by Giraldo et al. [5] in 2002 for the shallow water
equations on the sphere. One of the main contributions of that work is that the authors essentially
proposed a discontinuous version of the spectral element method so that the DG method was now able
to compete, in terms of efficiency, with spectral element methods. Since that paper, we have seen both
hydrostatic [14] and nonhydrostatic [6, 9] models come on line.

To allow the description of the CG and DG methods to remain as general as possible, let us derive the
unified CGDG method for the system of nonlinear (non-homogeneous) conservation laws

∂q
∂ t

+∇ ·F = S(q) (1)

where, for example, q is the state vector which could represent (ρ,uT ,θ)T with ρ being the density, u =
(u,v,w)T the Cartesian velocity field, and θ the potential temperature. Other items requiring definition

include the ∇ which is the operator
(

∂

∂x ,
∂

∂y ,
∂

∂ z

)T
, F is the flux tensor, and S(q) contains the source

terms which make Eq. (1) non-homogeneous.

2.1 Element-based Galerkin Methods

To discretize Eq. (1) in space via CGDG methods we first represent the global domain as a collection of
non-overlapping control volumes. For those familiar with either finite element or finite volume methods,
these building blocks of the discretization are known as either elements, volumes, or cells. An example
of this strategy is depicted in Fig. 1 where we show that inside each control volume, many more degrees
of freedom could be defined in order to increase the order of approximation.
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Figure 1: Element-based Galerkin Methods: the global domain is subdivided into a collection of non-overlapping
cells (left). Inside each cell one can define multiple degrees of freedom (right) in order to derive high-order
approximations.

If we now zoom onto the right panel of Fig. 1 we could identify the following basis functions associated
with each nodal value as shown in Fig. 2 where the panels show basis functions associated with the
corner (left panel), edge (center panel) and interior (right panel) points of the element.

a) b) c)

Figure 2: Basis functions inside a 3rd order element. The left panel shows a corner, center panel shows an edge,
and right panel shows an interior basis function.

Using such approximation functions one can then represent the state vector q as follows

qN(x, t) =
MN

∑
i=1

ψi(x)q̃i(t) (2)

where ψ are the basis functions defined in Fig. 2 and q̃ represents expansion coefficients (the unknowns).
The subscript N is used to denote that we are constructing an Nth degree approximation to the state vec-
tor q. The constant MN defines the number of basis functions required to build an Nth degree approx-
imation. For example, in one-dimension MN = N + 1 and on quadrilateral elements we would require
MN = (N + 1)2 while on triangles we would only require MN = 1

2(N + 1)(N + 2). It is worth noting
that the unified CGDG formulation is generally applicable to elements comprised of lines (1D), quadri-
laterals and triangles (2D), hexahedra, tetrahedra, and triangular prisms (3D); however, we shall only
describe the derivation for quadrilateral elements (2D).
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2.2 Basis Functions, Differentiation, and Integration

To define the local operators which shall be used to construct the global approximation of the solution
we began by decomposing the domain Ω into Ne non-overlapping quadrilateral elements such that

Ω =
Ne⋃

e=1

Ωe

as depicted in Fig. 1. We now define the reference element I = [−1,1]2 and introduce for each element
Ωe the smooth, bijective transformation FΩe such that Ωe = FΩe ( I). The notation x = FΩe (ξ ) will
also be used, with x = (x,z) ∈ Ωe and ξ = (ξ ,η) ∈ I. Associated with the map FΩe is the Jacobian
JΩe = dFΩe

dξ
, with determinant | JΩe |. The Jacobian determinant of FΩe restricted to the boundary of I is

denoted by Js
Ωe

. In both the CG and DG methods, we require the construction of basis functions ψ that
are functions of the space PN ( I) of bivariate polynomials of degree lower than or equal to N in I

PN ( I) = span{ξ n
η

m | m,n≤ N, (ξ ,η) ∈ I}, N ≥ 1.

For a description of possible basis functions see, e.g., [6] for quadrilateral basis functions, [4] for trian-
gular basis functions, and [9] for hexahedral basis functions.

With these definitions, we have

qN (x, t)|
Ωe

=
MN

∑
k=1

ψk

(
F−1

Ωe
(x)
)

qk(t), e = 1, . . . ,Ne, (3)

where we introduce the grid points xk = FΩe ((ξk,ηk)) and the grid point values qk(t) = qN (xk, t). The
expansion given in Eq. (3) is essential in order to compute local element-wise derivatives and integrals.
Concerning derivatives, in fact, it immediately provides

∂qN

∂x
(x, t)

∣∣∣∣
Ωe

=
MN

∑
k=1

d
dx

[
ψk

(
F−1

Ωe
(x)
)]

qk(t),
∂qN

∂ t
(x, t)

∣∣∣∣
Ωe

=
MN

∑
k=1

ψk

(
F−1

Ωe
(x)
) dqk

dt
(t). (4)

Concerning the computations of integrals, the expansion defined by Eq. (3) yields∫
Ωe

qN(x, t)dx =
∫

I
qN (x(ξ ) , t) | JΩe(ξ ) | dξ '

MQ

∑
k=1

ωk qk(t) | JΩe(ξk,ηk) | (5)

where MQ denotes the number of quadrature points of order Q.

2.3 CGDG Approximation

Now that we have defined the basis functions, differentiation, and integration we can begin the ap-
proximation of Eq. (1) via a unified CGDG formulation. We begin by substituting the approximations
of q into the continuous partial differential equation. Then we multiply this approximation by a test
function and integrate within each local element-wise domain and define the problem as follows: find
qN(·, t) ∈VN such that ∫

Ωe
ψ

(
∂qe

N
∂ t

+∇ ·F(qe
N)
)

dΩ =
∫

Ωe
ψ S(qe

N)dΩe, (6)

where qe
N denotes the degrees of freedom collocated in Ωe. Applying integration by parts and introduc-

ing the numerical flux F∗, the following problem is obtained:
find qN(·, t) ∈VN such that ∀Ωe, e = 1, . . . ,Ne∫

Ωe
ψ

∂qe
N

∂ t
dΩe +

∫
Γe

ψ n ·F∗(qN)dΓe−
∫

Ωe
∇ψ ·F(qe

N)dΩe =
∫

Ωe
ψ S(qe

N)dΩ, ∀ψ ∈VN , (7)
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where
VN = {ψ ∈S : ψ ∈PN(I), e = 1, . . . ,Ne} , (8)

where for CG S = H1(Ω) whereas for DG it is S = L2(Ω).

Notice that the requirement ψ ∈H1(Ω) implies VCG
N ⊂C0(Ω) whereas for V DG this is not a requirement

and so the solution may remain discontinuous across element boundaries.

By virtue of Eqs. (4) and (5), Eq. (7) can be written in the weak form

Me dqe

dt
+

Ns

∑
s=1

(Ms,e)T F∗(q)−
(

D̃
e
)T

F(qe) = S(qe) (9)

where

Me
hk =

∫
Ωe

ψiψ jdΩe, Ms,e
hk =

∫
Γe

ψiψ jns,edΓe, D̃
e
hk =

∫
Ωe

∇ψiψ jdΩe,

where h,k = 1, . . . ,MN , δhk is the Kronecker delta, ξ ki j
= (ξi,η j), wki j = ωiω j, ws

ki j
= ωi for j = 0 or

j = N and ws
ki j

= ω j for i = 0 or i = N where ki j = (i + 1)+ (N + 1)∗ j denotes that the counter k is a
tensor product of i, j = 0, . . . ,N.
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Figure 3: Stability Analysis with no dissipation for a) CG and b) DG using 4th order polynomials for the 1D wave
equation.

Further integration by parts in Eq. (9), yields the following strong form

Me dqe

dt
+

Ns

∑
s=1

(Ms,e)T (F∗(q)−F(qe))+(De)T F(qe) = S(qe) (10)

where
De

hk =
∫

Ωe
ψi∇ψ jdΩe.

Equations (9) and (10) define the DG solution as they are written. However, to make this form appli-
cable to CG we have to add one important step known as the Direct Stiffness Summation, or DSS, and
sometimes called the global assembly in the finite element literature. The idea is that we now construct
global representations of the local element-wise problems given by Eqs. (9) and (10). Let us now define
the following global matrices

M =
Ne∧

e=1

Me, Ms =
Ne∧

e=1

Ms,e, D =
Ne∧

e=1

De, D̃ =
Ne∧

e=1

D̃
e
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where
∧Ne

e=1 represents the mapping of the local degrees of freedom of each element Ωe to the corre-
sponding global degrees of freedom in Ω followed by summation (see [6] for further details).

Let us now look at the dispersion properties of both CG and DG. Figure 3 shows the amplification fac-
tors (blue crosses) and dispersion (red circles) for both the CG and DG methods without any dissipative
mechanism. Of course, this setup is completely artificial since neither method is ever run without dissi-
pation. However, it is interesting to see that the dispersion curves (red circles) are quite different from
the theoretically expected curve (solid black line). By introducing some form of dissipation, we now get
the curves given in Fig. 4.
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Figure 4: Stability Analysis with dissipation for a) CG with ν = 0.005 and b) DG with upwinding using 4th order
polynomials for the 1D wave equation.

We can now see that dissipation is indeed present (blue crosses) and this has significantly improved
the dispersion relations for both CG and DG (red circles). The stationary waves at the far right are
inconsequential since these waves are unresolved by the numerical method. Furthermore, the negative
group velocities resulting from the negative slope of the dispersion relation beyond k/kmax = 0.75 are
dampened and should be no cause for concern. A study for the linearized shallow water equations indeed
show excellent dispersion properties for DG [1].

Like all high-order methods (with inherently little or no dissipation) element-based Galerkin methods
such as the CGDG methods are not naturally monotone nor are they positivity preserving. These meth-
ods need some additional mechanisms in order to preserve positivity which we now discuss.

3 Positivity Preservation

In DG methods the obvious choice for preserving positivity is the inclusion of limiters. In fact, much of
the limiter technology built for finite volume methods in the early 1980s and 1990s could be used here.
The main problem with those limiters (such as classical minmod limiters, etc) is that they were designed
for low-order methods (e.g., second order finite volume methods). Since DG methods can be viewed as
the high-order generalization of finite volume methods, then if we have chosen to use DG it is because
we seek to use higher order than, say, second. Therefore, this situation demands the construction of a
new set of limiters that: 1) maintain positivity and 2) does not destroy the high-order accuracy of the
DG method.

Zhang and Shu [18] proposed the following linear scaling limiter for the compressible Euler equations

q̃e
i = θ (qe

i − q̄e)+ q̄e, θ = min
{

q̄e− ε

q̄e−qmin
,1
}

(11)
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where qe
i is the DG solution inside the element e and on the quadrature point i, q̄e is the mean value of

q inside the element e, qmin = min(qe
i )∀i = 0, . . . ,Q, Q represents the order of the quadrature formula,

and ε is a small number (e.g., 10−13). This limiter is quite simple and rather effective. From Eq. (11)
one can readily see that if 0 < qmin < q̄e that θ = 1 and so q̃e

i = qe
i . On the other hand, if qmin < 0 < q̄e,

then θ = q̄e+ε

q̄e−qmin
which then means that q̃e

i = ε > 0 when i corresponds to the minimum point inside
of e. Clearly, this limiter maintains positivity as long as q̄e is positive. This assumption is not too
restrictive because we assume (e.g., for moisture) that the variable is initially positive everywhere and
so the mean value inside each element should always be positive. Once we integrate the equations
forward in time as long as we have a positivity preserving limiter in space and use a strong stability
preserving method in time then q̄e should always remain positive. Moreover, it is easy to see from Eq.
(11) that this limiter preserves conservation. This can be shown straightforwardly by recognizing that qe

i
can be written in modal form as qe

i = q̄e +H.O.T where the high-order terms (H.O.T) are expanded via
orthogonal polynomials. Since P0 = 1 is the first orthogonal (Legendre) polynomial, then the integral of
the remaining H.O.T terms, multiplied by P0 = 1, will vanish.

What is not obvious to see (and of great importance) is that the limiter given in Eq. (11) also retains
high-order convergence. In other words, if we choose to use high-order methods, the solution remains
high-order. For a proof of the preservation of high-order convergence see [18]. Let us now demonstrate
how this limiter works in practice.
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Figure 5: Performance of DG Positivity Preserving Limiter. The 9th order DG solution after one-half revolution
is shown for a) no limiter and b) the positivity preserving limiter.

Let us solve the one-dimensional wave equation: ∂q
∂ t + ∂

∂x(qu) = 0 where u = constant with periodic
boundary conditions. Figure 5 shows the snapshot of the solution after a half revolution around the
periodic domain using 8th degree polynomials (9th order accurate). Note that in Fig. 5a we see that
the high-order DG method has no problem resolving the smooth part of the wave but has major issues
with maintaining positivity with the non-smooth square wave. When we apply the limiter (Fig. 5b) we
see that the method now maintains positivity. Note however, that minor overshoots are still present in
the solution. It is possible to eliminate these overshoots by a similar limiter based on a strict maximum
principle but this assumes that we know what the maximum value can be (see [17]). To see how the
limiter affects the high-order accuracy of the DG method, we now run a convergence study for various
polynomial orders after one full revolution but only considering the smooth part of the curve (we do not
expect high-order convergence for the non-smooth curve since it is not infinitely differentiable). Figure
6a shows the convergence rates with no limiter while Fig. 6b shows the convergence rates with the lim-
iter. Although the curves are different, the general high-order traits are retained. This convergence rate
study may not seem so interesting at first glance but in order to perform it we ran each polynomial order
through a variety of different numbers of elements. For the under-resolved configurations the limiter
was automatically activated in order to combat any negative numbers no matter how small. For these
simulatons we took ε = 0 so we do indeed get perfect positivity for all the simulations shown in this
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figure. For CG methods, this limiter can be applied provided that the CG method is constructed in the
unified CGDG formulation described above; the results are similar to those shown for the DG method
(not shown). However, one main drawback of the CG method is that it is inherently non-dissipative.
The DG method has natural dissipation built into it by virtue of the numerical flux (e.g., approximate
Riemann solver) where, if upwinding is used, yields sufficient dissipation to combat most steep gradi-
ents (see [6] for examples of CG versus DG for strong gradients). Therefore, the CG method needs a
dissipative mechanism in addition to the positivity preserving limiter. One possibility for handling this
stabilization (and perhaps the positivity preservation as well) is to use Variational Multi-Scale (VMS)
methods [8]. The idea behind VMS is very much akin to SUPG (Streamwise-Upwind Petrov-Galerkin)
methods where a stabilization (diffusion) term is added along the direction of the fluid flow. However,
VMS extends this idea by using not just the advective terms but the entire operator. Let us now describe
the VMS method applied to high-order CG methods. This description follows closely the approach of
[12].
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Figure 6: Convergence of DG Positivity Preserving Limiter. The convergence rates are shown for a smooth
(Gaussian) problem with a) no limiter and b) with the positivity preserving limiter.

Let us write the system of conservation laws as follows:

R≡ ∂q
∂ t

+L (q)−S(q) = 0 (12)

where L is the, e.g., divergence of the flux tensor for system of hyperbolic equations. In short hand
notation, the discretization of Eq. (12) by the standard CG method is written as(

ψ,
dqN

dt

)
+(ψ,L (qN)) = (ψ,S(qN)) (13)

where (u,v) =
∧Ne

e=1
∫

Ωe
uvdΩe denotes that the DSS operator has been applied. Following the steps in

[12] we arrive at the VMS formulation of Eq. (13) as(
ψ,

dqN

dt

)
+(ψ,L (qN)) = (ψ,S(qN))+(R,τL ∗(ψ)) (14)

where τ is the stabilization parameter that has been analyzed extensively by the SUPG and VMS com-
munity. In [12] we derive a simple parameter for use with high-order CG methods for the advection-
diffusion equation as follows:

τ =
h

2u

(
coth(Pee)− 1

Pee

)
(15)

where h is the element length, u is the velocity, and Pee is the element Peclet number defined as Pee =
uh
2ν

where ν is the kinematic viscosity of the problem. The attraction of the VMS method is that the
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dissipation (last term in Eq. (14)) acts only when the residual is non-zero. When the method is able to
satisfy the governing PDE this term vanishes.
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Figure 7: Deformation of a tracer imbedded inside of a rising thermal bubble for the compressible Euler equations
using 4th order CG: for a) the initial condition of the tracer, b) solution with filtering, c) solution with hyper-
viscosity (ν = 0.001m2/s), and d) VMS with Discontinuity Capturing. All the results are for a 20× 20 element
grid with 4th order polynomials up to a 600 second integration.

Figure 7 shows the results for a discontinuous tracer with various stabilization methods for CG. Figure
7a shows the initial condition, while Figs. 7b, c, d show the results after 600 seconds. Figure 7b shows
the results using standard filters for CG methods, Fig. 7c uses artificial diffusion, and Fig. 7d uses VMS
with Discontinuity Capturing (see [12] for details). Clearly, the VMS result is by far the best and is able
to get the tracer perfectly.

4 The NUMA Model

The Nonhydrostatic Unified Model of the Atmosphere (NUMA) is a framework for developing unified
regional and global weather prediction models. NUMA contains unified CGDG methods as well as a
suite of explicit, IMEX, and fully-implicit time-integrators (see [3] for some possible time-integrators).
In addition, NUMA has the capability to handle adaptive mesh refinement for both the CG and DG
implementations (see Sec. 5). Finally, NUMA has a collection of modules that allow it to simulate: 1)
nonhydrostatic equations in 2D; 2) nonhydrostatic equations in 3D (both in a cube and on the globe, see
[9, 3] for examples); 3) shallow water equations on the plane with wetting and drying for both storm-
surge and tsunami simulations; and 4) shallow water equations on the sphere. NUMA-Atmosphere is
being targeted by the U.S. Naval Research Laboratory in Monterey, California as its next-generation
mesoscale (regional) and global model. The development of the NUMA model is based on a synergistic
collaboration between the Naval Postgraduate School (NPS) and the Naval Research Laboratory (NRL)
- Monterey. The effort at NPS primarily consists of mathematical studies, algorithm development in-
volving primarily the dynamics and simple moist physics, while the effort at NRL focuses mainly on
preparing NUMA for operations; this includes the inclusion of topography, databases, radiation, and
other necessary physical parameterizations.
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5 Adaptive Mesh Refinement

There are two classes of Adaptive Mesh Refinement (AMR): 1) conforming and 2) non-conforming.

Figure 8a shows a conforming grid while Fig. 8b shows a non-conforming grid. The difference is
that the blue dot on the left panel shows that this edge is only claimed by two quadrilateral elements
(conforming) whereas on the right panel the edge with the blue dot shows that the edge is claimed by 3
elements (2 smaller ones from above and one larger one below). Conforming AMR is quite standard for
triangles but difficult to do for quadrilaterals although not impossible. Conforming AMR places all the
burden on the grid generation software to generate conforming grids whereas the CGDG solver requires
no modification in order to handle this type of grid - these are the virtues of this approach. The vices is
that conforming AMR software is typically very sophisticated and so may require coupling the solver to
an external grid generation library (see, e.g., [13]).

a) b)

Figure 8: Two types of adaptive mesh refinement: a) conforming and b) non-conforming.

On the other hand, Fig. 8b shows an example of non-conforming AMR which at first glance seems much
more complex. The advantage of this approach is that the grid generation can be made to be quite simple.
For example, whenever the refinement criterion indicates the need for refinement, each quadrilateral is
divided into four smaller (children) elements. Non-conforming AMR, in contrast to conforming AMR,
places all the burden on the CGDG solver because the solver now has to understand how to handle
non-conforming edges. For details of AMR, we refer the reader to our recent paper [11].

a) b)

Figure 9: Potential temperature contours and mesh for a rising thermal bubble after 700 seconds with a) θt =
0.001 and b) θt = 0.05 where θt is the refinement criterion threshold value.
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Figure 9 shows the potential temperature contours and grid for two different refinement criteria (θt).
The smaller θt means that more elements are produced since once that value of θ is detected, the mesh
is refined. One obvious question is: what is there to be gained by using dynamic AMR? This question
is answered in detail in [11] but in Fig. 10 we show an example.
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Figure 10: The benefit of AMR is illustrated. In a) we show the time history of the change in the number of
elements with different refinement criteria θt and in b) we show the speedup over a high-resolution uniform mesh
for different time-integrators (explicit and implicit-explicit methods)

.

Figure 10a shows the number of elements as a function of time using four different refinement criteria
(θt values). Clearly, the larger θt the fewer elements produced. In Fig. 10b we show the speed-up
gained by using AMR. The speed-up is measured as the ratio of the wallclock time required by a high-
resolution reference simulation to the AMR simulation. The ideal speed-up assumes that the wallclock
time is directly correlated to the number of elements in the domain. This figure shows that ideal speed-
up is indeed achieved by the explicit RK35 method (solid blue line) when no compiler optimization
is used. In contrast, the IMEX time-integrators (solid red and green lines) fall short of ideal speed-up
but it should be understood that these simulations are well over a factor of ten faster than the explicit
simulation (by virtue of the larger time-step allowed). The dotted lines in this figure show the results
when compiler optimizations are turned on. Here we note that the IMEX methods achieve super speed-
up. The reasons are due to the AMR simulations having fewer elements that fit entirely within cache
and with the compilers streamlining memory access (e.g., prefetching, etc.). We clearly see a gain in
efficiency with AMR but this efficiency does come at a price regarding accuracy (not shown). Therefore
AMR is only a choice when one is interested in resolving a particular process accurately where one is
willing to pay the price of inaccuracies in the coarser mesh regions. One such example is the tracking
of a hurricane where the fine region is focused on the eye of the storm whereas the rest of the domain
remains coarse.

6 Parallelization

One of the main virtues of CGDG methods is their excellent scalability on distributed-memory architec-
tures. The reason for this has to do with the building-block approach of element-based Galerkin (EBG)
methods. Although the finite volume (FV) method can be classified as an EBG method, it is the high-
order extension of the FV method that makes it no longer fall within the EBG category. For a method to
satisfy the EBG property it needs to have a compact stencil - this means that all (or most of) the informa-
tion required to build an approximation falls within the building-block (or element). This is true for both
CG and DG methods because each element can contribute to the overall solution independently. This is
not the case if the differencing stencil is non-compact because information from other building-blocks
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(or control volumes) is required. This adversely affects parallel scalability as the amount of information
being transferred needs to be much larger than for a compact method in spite of the main cost in parallel
algorithms being latency. In Fig. 11 we show the scalability of CG and DG methods in the NUMA
model.
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Figure 11: The scalability of CGDG methods in NUMA using explicit time-integration for 323 hexahedral ele-
ments. In a) we show the results for 4th order polynomials (53 grid points per element) and in b) are the results
for 8th order polynomials (93 grid points per element).

The left panel (Fig. 11a) shows the speed-up using 4th order polynomials inside each of the 323 cubed
elements in this 3D calculation of a rising thermal bubble. Although both CG and DG scale very well,
they begin to lose perfect scalability at 16K cores. In Fig. 11b we show the results when we increase
the polynomial order to 8th order which dramatically increases the amount of work being done (on-
processor) inside each element. The DG method achieves perfect strong linear scalability beyond 30K
cores; at this point there is only one DG element per core. In contrast, the CG method continues to scale
well although not perfectly. When this simulation was conducted, the CG and DG methods resided in
different codes. Now that they reside within the same framework we believe that the CG result will
approach those of DG although will not yield the same level of efficiency.

To understand why DG scales better than CG we need to understand the communication stencil of both
methods.

a) b)

Figure 12: The communication stencil for a) CG and b) DG on quadrilateral elements.

Figure 12 shows the communication stencils for both CG and DG. Since the solution for CG is required
to be C0 continuous then all degrees of freedom that intersect at an element edge or corner must have
the same solution regardless of which element they are defined in; this is depicted in Fig. 12a where
we see that the center element requires information (and hence communication) from all of the eight
surrounding elements which we refer to as vertex neighbors since these neighbors share a vertex with the
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center element. In contrast, the DG method (Fig. 12b) only requires information from the 4 surrounding
edge neighbors and so the communication stencil is much smaller. However, it should be understood
that we have made a conscious decision to construct the communication stencil in this fashion (via the
numerical flux function F∗) which then limits the maximum allowable time-step compared to the CG
method. We could construct a different (multi-dimensional) flux (see, e.g., [16]) that would then require
a communication stencil similar to CG. The advantage is that the time-step would be similar to that for
CG but the disadvantage is that the communication stencil is larger. We believe that the more compact
communication stencil outweighs the time-step restriction especially for very large core counts as those
expected in the petascale and exascale ranges.

It is generally understood that to reach the exascale range of computing (1018 floating point operations
per second) will require a hybrid computer system consisting of both Central Processing Units (CPUs)
and Graphics Processing Units (GPUs). To take advantage of such a computer system will require
rewriting existing message-passing interface (MPI) code to allow the use of either CUDA or OpenCL
or some accelerator translator (GPUs are often called accelerators). There is an on-going U. S. Office of
Naval Research (ONR) project related to porting the NUMA model to GPUs by writing general modules
(using OpenCL) called “mini-apps” that are highly optimized for specific accelerator hardware and then
ported into specific models. The translation from CPU-based to GPU-based kernels will be handled by
Loo.py [10], a newly developed translator that takes a specific syntax and produces highly optimized ker-
nels; the advantage of Loo.py is that it offers a semi-automated process of producing highly optimized
kernels on future accelerator architectures. This ONR project consists of a collaborative effort involv-
ing the following institutions: the Naval Postgraduate School, (Department of Applied Mathematics),
Rice University (Computational and Applied Mathematics), University of Illinois-Urbana Champaign
(Computer Science), and the Naval Research Laboratory (both in Monterey California and Stennis Mis-
sissippi). Software developed in this project will be open source so that both the atmospheric and ocean
modeling communities can benefit from this work.

7 Conclusions

We have shown a unified continuous Galerkin (CG) and discontinuous Galerkin (DG) formulation for
systems of nonlinear hyperbolic equations. Furthermore, we have shown some possible positivity pre-
serving mechanisms for both CG and DG. The dispersion relations of CGDG were presented and the
parallel scalability of these methods was illusrated for core counts beyond 30K cores. Finally, the use
of AMR for CGDG was illustrated. In summary, CGDG methods appear to be a very good choice
for the construction of next-generation nonhydrostatic unified regional/global numerical weather sys-
tems. CGDG methods are: highly accurate, efficient, conservative with excellent dispersion properties
(at the resolvable scales), geometrically flexible to allow the use of statically and dynamically adaptive
(non-conforming) mesh generation, highly scalable on current and future computer architectures, and
sufficiently flexible to allow models based on these methods to have a long shelf-life.
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[13] A. MÜLLER, J. BEHRENS, F. X. GIRALDO, AND V. WIRTH, Comparison between adaptive and
uniform discontinuous Galerkin simulations in dry 2D bubble experiments, Journal of Computa-
tional Physics, 235 (2013), pp. 371–393.

180 ECMWF Seminar on Numerical Methods for Atmosphere and Ocean Modelling, 2-5 September 2013

http://faculty.nps.edu/fxgirald/Homepage/Publications_files/Giraldo_et_al_SISC_2013_Final.pdf
http://faculty.nps.edu/fxgirald/Homepage/Publications_files/Giraldo_et_al_SISC_2013_Final.pdf
http://oghpc.blogs.rice.edu/files/2011/09/Kloeckner-final.pdf
http://oghpc.blogs.rice.edu/files/2011/09/Kloeckner-final.pdf
http://faculty.nps.edu/fxgirald/Homepage/Publications_files/Kopera_Giraldo_JCP_2013_submitted.pdf
http://faculty.nps.edu/fxgirald/Homepage/Publications_files/Kopera_Giraldo_JCP_2013_submitted.pdf
http://faculty.nps.edu/fxgirald/Homepage/Publications_files/Kopera_Giraldo_JCP_2013_submitted.pdf


GIRALDO, F.X.: CONTINUOUS AND DISCONTINUOUS GALERKIN METHODS . . .

[14] R. NAIR, H.-W. CHOI, AND H. TUFO, Computational aspects of a scalable high-order discon-
tinuous galerkin atmospheric dynamical core, Comp. Fl., 38 (2009), pp. 309–319.

[15] M. TAYLOR, J. TRIBBIA, AND M. ISKANDARANI, The spectral element method for the shallow
water equations on the sphere, Journal of Computational Physics, 130 (1997), pp. 92–108.
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