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1. Introduction 

Our project focused on quantifying surface carbon fluxes varying in space and in time, using 

observations of atmospheric CO2 concentrations. Although it is a “top-down” approach, our methodology, 

denoted UMD-UCB carbon cycle data assimilation system (UMD-UCB CDA) and described in Kang et 

al. 2011, 2012), introduced several new techniques compared to previous top-down methods (e.g. Peters 

et al. 2005, 2007; Baker et al. 2006, 2010; Rayner et al. 2008; Michalak, 2008; Chevallier et al. 2009; 

Feng et al., 2009). The UMD-UCB CDA analyzes meteorological and carbon variables simultaneously, 

whereas other studies only focus on the estimation of surface carbon fluxes. It deals with uncertainties of 

atmospheric CO2 concentrations caused by surface carbon fluxes as well as by the wind. It introduces a 

new approach, known as “localization of variables” that optimizes the configuration of background error 

covariance among the variables by including only error covariances between physically relevant variables 

and zeroing out sampling errors in the covariance between unrelated variables (Kang et al. 2011).  

In addition to other advanced ensemble Kalman filter data assimilation techniques such as adaptive 

inflation and localization methods, we use a short analysis window of just six hours, similar to that used 

in atmospheric data assimilation. Previous studies usually use long windows, from several weeks to 

months (Kang et al. 2012). Short windows should allow updating surface carbon fluxes using observed 

atmospheric CO2 with minimal attenuation of information between atmospheric CO2 and surface carbon 

fluxes. Although “top-down” approaches assume that trajectory or evolution of emitted CO2 from the 

surface is reasonably well known, it is impossible to avoid errors in the transport and turbulent mixing of 

CO2, especially with a long time window, which led Enting (2002) to describe the inversion problem as 

being intrinsically ill-posed. In the past, with only about hundred observations of CO2 per week over the 

entire globe, the lack of information was a more serious problem than the transport errors for each 

observation, so that it made complete sense to use each observation in such a way as to constrain a very 

broad area on the globe by using long assimilation windows. However, with the current and near future 

availability of satellite data measuring atmospheric CO2, together with the more abundant ground-based 

observations, it may be possible to provide a global constraint for surface carbon fluxes at finer resolution 

even within a short window. Also, a short window allows incorporating uncertainties of the weather 

variables into a carbon cycle data assimilation system. With a long assimilation window, we cannot 

include wind uncertainty in UMD-UCB CDA, because a long window leads to nonlinear growth of 

ensemble perturbations and the weather variables lose predictability. 

The main purpose of this paper is to test whether it is possible to retrieve the evolving surface 

carbon fluxes accurately at grid point resolution by simultaneously assimilating weather and carbon 

variables using short windows with the advanced Local Ensemble Transform Kalman Filter (LETKF, 

Hunt et al., 2007) with additional features. For simplicity, we test this hypothesis using an Observing 



System Simulation Experiment (OSSE) under the assumption of a perfect model. For this purpose, we use 

the SPEEDY model (Molteni, 2003), a realistic but fast spectral atmospheric model, to which we added a 

carbon prognostic variable as a tracer, and surface carbon fluxes assumed to be constant except when 

modified by the data assimilation. In the “nature” run from which observations are simulated, terrestrial 

carbon fluxes are obtained from CASA (Randerson et al. 1997), and oceanic flux from Takahashi et al. 

(2002). 

In section 2, we describe the standard LETKF, section 3 discusses the analysis of surface CO2 

fluxes and atmospheric CO2 concentrations in addition to weather variables within UMD-UCB CDA. 

Results are shown in section 4 and we summarize conclusions and future work in section 5. 

2. Standard Local Ensemble Transform Kalman Filter 

The analysis cycle for numerical weather prediction (NWP) starts by computing an ensemble of K 

6-hour forecasts with the previous ensemble of K analyses as initial conditions. Next, we compute the 

background ensemble perturbation matrix bX , whose columns contain a departure of each ensemble 

forecast ( )(kbx ) from the ensemble mean ( bx ): the k-th column of bX  is bkb xx −)( , 

{ }Kk ,,2,1 …= , and x  is a state vector of dynamic variables at the model grids. Then, the observation 

operator h is applied to the ensemble forecast bx  to transform the background from the model grid 

space to the observation space, )( )()( kbkb h xy = . Let bkbb yyY −= )( , { }Kk ,,2,1 …= , be the 

ensemble background perturbations in observation space.  

At every grid point, the LETKF assimilates only observations within a certain distance from each 

grid point so that the following analysis computations are performed locally. The analysis mean, a
l )(x , is 

given by  
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ensemble space where B(l )
−1 = (K −1)I , R is the observation error covariance matrix, oy  is the 

observation vector, and ρ  is the inflation factor, and the subscript (l) indicates a quantity defined on a 

local region centered at the analysis grid point l. Within a local region, space localization is carried out by 

multiplying the inverse observation error covariance matrix 1
)(

−
lR  by a factor that decays from one to 



zero as the distance of the observations from the analysis grid point increases (Greybush et al, 2011).  

From (1) and (2) the analysis increment, b
l

a
l )()( xx −  is given by the background perturbation 

matrix multiplied by the weight vector, which is a function of the innovation, b
l

o
l )()( yy − , and error 

statistics of both background and observations. Thus, the analysis reflects observational information more 

than background information if the background error is greater than the observation errors, and vice versa. 

In addition, the ensemble perturbations of the analysis are determined by 
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With (3), we obtain the estimation of analysis uncertainty in addition to the analysis mean. The 

global analysis ensemble )(iax , { }Ki ,,2,1 …= , is formed by gathering the values obtained for a
l )(x  

and a
l )(X  at all the analysis grid points (Hunt et al. [2007]). 

3. Modifications of the LETKF made in the UMD-UCB CDA 

For standard NWP applications, the state vector x includes wind (U, V), temperature (T), humidity 

(q), and surface pressure (Ps). In the UMD-UCB CDA, we augment x with the atmospheric CO2 

concentration (C), a prognostic variable treated in the SPEEDY-C model as a passive tracer, as well as 

with surface carbon flux (CF), which we define as an “evolving parameter” (i.e., a variable for which 

there are no observations). The forecast model that provides the background state to the analysis in the 

UMD-UCB CDA has six prognostic variables (U, V, T, q, Ps, C), and reads CF as a surface forcing every 

six hours. Thus, we use an augmented state vector x consisting of (U, V, T, q, Ps, C, CF) at all model grid 

points, where the “parameter” CF, like Ps, is defined at the model surface grid points. In the current 

version of the system, there is no process to update CF during the forecast step. On the other hand, we 

assimilate observations of (U, V, T, q, Ps) as well as atmospheric CO2 concentration (C), but no direct 

observations of CF, which is only updated by the analysis step through the multivariate background error 

covariance. With this experimental setting, UMD-UCB CDA is based on a flow-dependent multivariate 

background error covariance of (U, V, T, q, Ps, C, CF) when assimilating (U, V, T, q, Ps, C) observations 

every six hours at the analysis step.  

 

3.1. Localization of variables 

Kang et al. 2011 (hereafter K11) pointed out that error covariances between unrelated variables 

inevitably introduce sampling errors in the standard EnKF. Thus, K11 zeroed out unphysical error 

covariances between unrelated variables (denoted Localization of variables or LOCvar) and found that 

this strongly reduced sampling errors. Winds transport atmospheric CO2, so that the best strategy of the 



LOCvar for carbon cycle data assimilation obtained by K11 was to keep the error covariance computed 

between wind fields (U, V) and atmospheric CO2 (C) but to zero out the error covariances between (U, V) 

and surface carbon fluxes (CF), as well as between (T, q, Ps) and (C, CF) (referred to as “localized 1-way 

multivariate data assimilation” in Figure 1). In this LOCvar system, the analysis of meteorological 

variables was not influenced by CO2 variables because the wind uncertainty was estimated from the 

analysis of meteorological variables and provided to the atmospheric CO2 analysis in a “one-way” mode 

(no feedbacks allowed from the CO2 analysis to the wind). This was done because it was found that 

modifying the winds with the information provided by the wind-atmospheric C error covariance, as would 

be done in the standard LETKF increased the wind errors. 

 
Figure 1. Schematic plots of background error covariance matrix )1/( −= KTbbb XXP  for a 
fully multivariate (left) and a localized-1way (right) analysis system. The shading of the variable 
names are matched with the system used for their updates. White areas with “no” indicate the 
error correlation between variables is assumed to be zero during the analysis, while areas with “yes” 
indicate that the errors are allowed to be correlated (adapted from Figure 1 of Kang et al. 2011) 

 

3.2. Inflation 

In ensemble Kalman filter data assimilation (EnKF), the analysis is the optimal interpolation 

between the ensemble of short-range model forecasts and the observations. If the background (forecast) 

error variance is underestimated, the analysis system deemphasizes the observations because the analysis 

algorithm places too much confidence in the background. This process feedbacks, and may eventually 

lead to filter divergence, with the ensemble analysis no longer reflecting the observations. Conversely, an 

overestimation of background error variance leads to over-fitting the observations. In EnKF, the 

background error variance estimated from the ensemble forecasts tends to be underestimated because the 

ensemble size is limited and the forecast model is imperfect. This underestimation of background 

uncertainty would diminish the impact of the observations, especially in data-rich regions (Whitaker et al., 

2008; Miyoshi et al., 2010). Thus, there is a need to inflate the background/analysis error covariances in 

such a way that the ensemble spread does not collapse in data-rich regions and is not excessively large in 

data-poor regions. 



In order to better represent the background uncertainty in the EnKF analysis, we have 

implemented the adaptive multiplicative inflation of Miyoshi (2011). Since CF is not measured and its 

forecast is persistence, it was found necessary to further inflate the ensemble analyses of (C, CF) with an 

additive inflation in addition to the standard multiplicative inflation. The added random fields for each 

ensemble member are selected from the nature run: pairs of atmospheric CO2 and surface carbon flux 

fields are chosen randomly within 30 days centered at the analysis time and then scaled to a magnitude 

corresponding to a 6-hour difference. The additive fields for atmospheric CO2 are scaled again by a factor 

of 0.70, chosen by trial and error, before being added to each analysis ensemble. We scale the amplitude 

of the additive fields for CF by a factor of 0.1 and adjust this factor by requiring that the global mean 

spread of CF ensemble be at least 5.0×10-9 kg/m2/s. 

 

3.3. Vertical localization of column mixing CO2 data 

For GOSAT column CO2 data, the averaging kernel is nearly uniform from the surface to the 

upper troposphere (Figure 2). However, the forcing of atmospheric CO2 that we would like to estimate 

takes place near the surface. Within a 6-hour time step, we do not expect a significant impact of CF on the 

CO2 mixing ratio throughout the entire troposphere, as we would observe if we used the averaging kernel 

as observation operator. Instead, we confine the changes in the CO2 mixing ratio due to the observed 

changes in the CO2 to the lower atmosphere and let the forecast model mix the CO2 vertically. This is 

equivalent to “localizing” the column CO2 information, and updating only the lower atmospheric CO2 

rather than the full column of CO2. In other words, the vertical localization function is large in the lower 

troposphere but zero in the upper layers, because atmospheric CO2 is forced by the surface carbon fluxes 

and is well mixed in the upper layers. Therefore, after comparing column CO2 background (forecast) with 

the GOSAT observation in the observation space, the innovations (observations minus model forecast) 

are used only in the lowest three vertical levels (up to sigma level of 0.685) for the analysis of CO2. Here, 

the column CO2 background is computed by multiplying the averaging kernel by the CO2 concentration at 

each level: ∑
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the subscript l indicates the l-th vertical level of total nlev levels, b
ky  is the column CO2 background at 

the observation space, H is an observation operator, b
lk ,x  is the k-th background ensemble forecast of 

CO2 concentration for the l-th vertical level at the model space, la  is the value of averaging kernel at the 

l-th vertical level which is normalized in a way that its vertical sum is equal to unity, and S is a spatial 

interpolation operator.  



 

Figure 2. Averaging kernels of GOSAT and AIRS assumed in our simulation experiments, which 
are normalized to make each of a vertical sum the unity. (Figure 2 of Kang et al. 2012) 

4. Results 

4.1. Localization of variables 

We tested the impact of the localization of variables (LOCvar) under a simple emission scenario 

with a simulation experiment where the only carbon emission is anthropogenic fossil fuel emission 

constant in time (Figure 3a). When assimilating synthetic data of ground based observations and GOSAT 

data for atmospheric CO2 and radiosonde data for weather variables, the experiment with LOCvar (Figure 

3b) greatly outperforms the one including a fully multivariate error covariance (Figure 3c). This is 

because the system with LOCvar includes the important transport errors in the atmospheric CO2 analysis 

but eliminates the sampling errors introduced by computing the essentially zero error covariance between 

(C, CF) and (T, q, Ps), as well as the covariance between CF and (U, V). 



 
Figure 3. (a) True state of surface CO2 fluxes and the analysis (b) with LOCvar and (c) without 
LOCvar (which means using the analysis with fully multivariate background error covariance as in 
Fig. 1a). (Units are 10-9 kg/m2/s) 

 

4.2. Inflation and vertical localization of column mixing CO2 data 

We upgraded the UMD-UCB CDA system with more advanced EnKF data assimilation 

techniques such as advanced inflation methods and spatial localization for column mixing data (Kang et 

al. 2012). As a result, we have obtained very promising CF estimation with seasonal variations, indicating 

success in estimating time-evolving two-dimensional parameter (Figure 4). The results of the simulation 

experiments (with a perfect model) assume that the true CF includes both constant fossil fuel emission as 

well as time-evolving, biosphere driven terrestrial carbon fluxes from CASA (Randerson et al. 1997), and 

oceanic flux from Takahashi et al. (2002). Table 1 shows a quantitative comparison among the 

experiments with and without advanced inflation methods and vertical localization technique. FixedM 

experiment indicates a standard EnKF inflation setting which has constant multiplicative inflation in time 

and space, AdaptM indicates adaptive multiplicative inflation that updates multiplicative inflation factor 

in time and space every analysis step, and Addi is additive inflation as described before. LowLevel means 

the result from vertical localization of GOSAT column mixing CO2 data and FullColumn means the 

result without the vertical localization. More detailed descriptions of each method and the corresponding 

results can be found in Kang et al. 2012. 



 

Figure 4. True state of surface CO2 fluxes (left) and its analysis (right) after three month of data 
assimilation (top), after seven months (middle), and one-year (bottom) of data assimilation. (Units 
are 10-8 kg/m2/s) 
 

Table 1. RMS errors of analyses in surface CO2 fluxes from the sensitivity experiments to the 
inflation method and vertical localization of column CO2 data: column ONE YEAR includes the 
RMSEs averaged over the one-year analysis period except for the first three months, and column 
SUMMER includes those only for July and August. ( , ) indicates the RMS errors over land and ocean 
respectively. Here, the RMS errors are computed over every grid point at the surface with respect to the 
true CO2 fluxes. (Table from Kang et al. 2012) 

Inflation Vertical localization RMSE of surface CO2 fluxes (gC/m2/yr): 

Global mean (land, ocean) 

ONE YEAR SUMMER 

FixedM LowLevel 185.76 (294, 118) 218.44 (370,114) 



FixedM + Addi LowLevel 159.10 (249, 106) 155.66 (244,101) 

AdaptM + Addi LowLevel 114.38 (179, 75) 115.24 (182,73) 

AdaptM + Addi FullColumn 124.70 (213, 63) 122.12 (208, 62) 

 

4.3. Short window vs. Long windows 

In order to test the impact of shorter vs. longer windows, we performed the CO2 analysis with an 

extended (three-week) analysis window. An Ensemble Kalman Smoother has been applied to constrain 

CF, assimilating future observations within a three-week analysis window. Note that LETKF-C (with a 

short window) incorporates meteorological variables in analyzing CO2 variables in order to include wind 

uncertainties in CO2 analysis. However, with an extended three-week window, we cannot include wind 

uncertainty in CO2 analysis because such a long assimilation window leads to nonlinear growth of 

ensemble perturbations and three weeks are long enough for the weather variables to lose predictability. 

Indeed, the results from the simultaneous analysis with atmospheric variables in the long assimilation 

window experiment are greatly degraded compared to LETKF-C results (not shown). Thus, we have 

performed carbon-univariate data assimilation system with a three-week analysis window (LongWindow, 

hereafter), which excludes ensemble of meteorological variables and assimilates only atmospheric CO2 

observations for analyzing atmospheric CO2 and surface CO2 fluxes. LongWindow uses the six-hour 

analysis mean of wind fields from the LETKF-C in order to transport atmospheric CO2. This 

LongWindow system is similar to many previous studies in several ways: 1) wind information is given by 

an independent analysis, 2) there is no explicit treatment of transport errors during CO2 analysis, and 3) it 

uses a long assimilation window.  

Figure 5 shows that, initially, the (3-week) LongWindow has larger analysis increments because it 

assimilates observations for three weeks from the initial time to constrain CF, while the (6 hours) 

LETKF-C assimilates the observations available only at the analysis time so that the initial increment is 

very small. Broad negative errors appear over the Southern Hemisphere in LongWindow because the 

random initial state of lower tropospheric CO2 has positive errors over the region. The LongWindow 

analysis tries to reduce those errors using three weeks observations, and thus broad negative CF is 

estimated while LETKF-C has small CF analysis increments using six-hour observations.  



 

Figure 5. True surface CO2 fluxes (left) and their analyses from LETKF-C (middle) and 
LongWindow (right) on January 1st (top), January 22nd (the second row), July 30th (the third row), 
December 24th (bottom). Unit for the color figures is 10-8kg/m2/s. Global RMS error and spatial 
correlation coefficient are included below each analysis plot. 

 

In terms of the amount of assimilated observations, it would be fair to compare the result of 

LongWindow at 00Z01JAN with that of LETKF-C at 00Z22JAN, showing how different the CF analyses 

are according to the length of analysis window. Overall, both windows succeed in estimating the evolving 



CF, but LETKF-C has more detailed and localized CF estimation than LongWindow. Including CO2 

observations far from the analysis time may not necessarily improve the CF analysis compared to an 

instantaneous analysis due to the attenuation of detailed information as discussed in Enting (2002), Figure 

1.3. A shorter assimilation window reduces the attenuation of observed CO2 information because the 

analysis system can use near-surface CO2 observations before the transport of CO2 blurs out the essential 

information of near-surface CO2 forcing (schematic Figure 6). Note that the short assimilation window is 

also allowed to use real-time wind uncertainty information within LETKF-C system, whereas 

LongWindow could not benefit from it. 

 

Figure 6. Schematic plot of carbon cycle data assimilation system with long assimilation window 
(left), and with short window (right): When we attempt to estimate surface carbon fluxes by 
assimilating atmospheric CO2 observations, a short window reduces the attenuation of observed CO2 
information because the analysis system can use the strong correlation between C and CF before the 
transport of atmospheric CO2 blurs out the essential information of surface CO2 forcing. Thus, we cannot 
reflect the optimal correlation between C and CF within a long assimilation window, which can introduce 
sampling errors into the EnKF analysis. 

5. Summary and discussion 

We developed a simultaneous analysis system of CO2 and meteorological variables using the 

LETKF data assimilation method. Through the use of OSSEs, we found that including advanced 

assimilation techniques makes it possible to estimate time-evolving surface CO2 fluxes, even without 

direct observations or land surface models providing prior information.  

The use of a simultaneous atmospheric and CO2 analysis with short windows links errors in 

surface CO2 fluxes to the information about near surface atmospheric CO2 concentrations, accounting for 

uncertainties in the wind fields used for driving the transport model in the flux inversion, and before the 

signal gets blurred by nonlinear transport and turbulence effects. It estimates the background error 

covariance among the variables of atmospheric CO2, surface CO2 fluxes and wind, without having to run 

a separate transport model used as an observation operator in most previous studies. The “localization of 

variables” introduced in K11 accounts for wind uncertainties during the analysis cycle of carbon variables 

while zeroing out the covariance between variables that are not physically coupled. This substantially 

reduces sampling errors and improves the estimation of CO2 fluxes. We also find that the accurate 

representation of background uncertainties with advanced inflation methods is essential in order to obtain 



good estimations of the carbon variables. Advanced inflation methods and vertical localization methods 

are important for the success of the UMD-UCB CDA in estimating time-evolving surface carbon fluxes. 

LETKF-C uses a much shorter analysis window (6 hours) than previous studies in order to account 

for time-evolving error covariance between wind and CO2 as well as to avoid the attenuation due to 

turbulent transport of the observed CO2 information. While a longer assimilation window (3 weeks) also 

succeeds in estimating the evolving surface carbon fluxes, we find that it has less spatial structure than the 

short 6-hour window. This is because atmospheric CO2 observations for several weeks ahead can contain 

surface CO2 forcing information far from the analysis point, so that the analysis system loses information 

on the CO2 transport due to errors in the transport model and the wind analysis. The results show that the 

flux inversion with a long-time assimilation window is not as accurate as the one obtained with a six-hour 

assimilation window, particularly the smaller-scale structures. In other words, a longer window allows 

more observations to be used for constraining surface CO2 fluxes but the loss of information (Figure 1.3 

of Enting, 2002) makes surface carbon flux estimates with long windows somewhat worse than analyses 

using 6-hour windows. 

In a perfect model scenario, our results indicate that carbon cycle data assimilation system does 

not require using a priori information, including information on initial conditions. However, we have not 

accounted for error sources such as model errors of meteorological variables, the diurnal cycle of carbon 

fluxes, and observation biases, so that we will face additional difficulties when using real observations. 

These difficulties may be overcome by applying additional advanced methodologies, such as the use of 

information about the carbon fluxes climatology, more accurate models of surface fluxes, estimation and 

correction of model/observation errors [Danforth et al. 2007; Li et al., 2009a and 2009b]. We are 

currently working on a more realistic system based on the NCAR Community Atmosphere Model (CAM, 

version 5) and real observations following the work of Liu et al. [2011, 2012]. Liu et al. (2011) quantified 

the non-negligible impact of meteorology uncertainty on CO2 forecast with the coupled LETKF-CAM. 

Liu et al. (2012) further demonstrated the system performance in estimating CO2 concentrations by 

simultaneously assimilating meteorology observations and the mid-troposphere Atmospheric InfraRed 

Sounder (AIRS) CO2 observations with the LETKF-CAM. It is also possible to incorporate a priori 

information and models into our analysis system to get a physical update on the background state of 

carbon fluxes, such as done in CarbonTracker (Peters et al., 2007). This should improve the results further 

and reduce the difficulties associated with the assimilation of real observations with an imperfect model.  

Finally, we note that the methodology that we have developed in this study can be also applied to 

any type of surface fluxes, not just carbon fluxes. In particular, we have obtained similarly good results in 

estimating surface fluxes of sensible and latent heat assuming a realistic coverage of AIRS temperature 

and moisture retrievals. Therefore, this approach could have a broader impact on various applications 

estimating time-evolving parameters within EnKF data assimilation system. 
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Parameter Estimation in EnKF: Surface Fluxes 
of Carbon, Heat, Moisture and Momentum 

Ji-Sun Kang, Eugenia Kalnay, Takemasa 
Miyoshi, Junjie Liu, Inez Fung, Kayo Ide, Brian 

Hunt, and many collaborators at the  
University of Maryland Weather-Chaos group 



Outline 
•  Motivation: Why did we decide to estimate carbon fluxes as 

parameters, not using traditional inversion? 
•  LETKF: brief introduction. 
•  Simultaneous assimilation of carbon and meteorological 

observations 
•  Parameter estimation with LETKF allows us to estimate 

surface fluxes. 
•  Advanced methods: “variable localization”, vertical physical 

localization, one-way covariance coupling, covariance inflation. 
•  Are short or long assimilation windows better? We use 

6hr windows, inversion methods use months, not hours. 
•  Wouter Peters developed the EnKF-based Carbon Tracker. He 

commented on our approach. 
Results 
 



Motivation 
Unlike traditional carbon flux inversions, 
•  We are estimating carbon fluxes as parameters 
•  Assimilating simultaneously carbon and atmospheric u,v,T,q,ps  
•  Using short windows (6hr, not many months)  
 
Inez Fung had the vision (~1990’s) that data assimilation was the 
best approach to estimate carbon fluxes. Inez and I got a DOE 
grant to test this methodology (~2008) 
 
It took us several years to make it work (Ji-Sun Kang’s thesis 
2009, JGR 2011, 2012). Also Junjie Liu, now at JPL. 
 
For “perfect model” simulations we recover the true fluxes 
accurately at model grid resolution, without any a priori 
information.   



4D-Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���
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•  Model independent 
(black box) 
• No adjoint needed 
•  4D LETKF extension 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  LETKF computes the 
weights for the ensemble 
forecasts explicitly 

(Start with initial 
ensemble) 

LETKF Observation 
operator 

Model 

ensemble  
analyses 

ensemble 
forecasts 

ensemble   

“obs” 

Observations 



Localization based on observations 
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Perform data assimilation in a local volume, choosing 
observations  

The state estimate is updated at 
the central grid red dot 

 



Localization based on observations 
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Perform data assimilation in a local volume, choosing 
observations  

The state estimate is updated at 
the central grid red dot 

All observations (purple 
diamonds) within the local 
region are assimilated 

The LETKF algorithm can be described in a single slide! 



Local Ensemble Transform Kalman Filter (LETKF) 
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Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, 
and compute the local analysis error covariance and 
perturbations in ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the 

new global analyses. Note that the the output of the LETKF are 
analysis weights         and perturbation analysis weight matrices  
These weights multiply the ensemble forecasts. 

   
x n,k

b = M n x n−1, k
a( )

X b = x1
b − xb | ... | x K

b − xb⎡⎣ ⎤⎦;

y i
b = H (x i

b ); Yn
b = y1

b − yb | ... | y K
b − yb⎡⎣ ⎤⎦

Pa = K −1( )I +YTR−1Y⎡⎣ ⎤⎦
−1
;Wa = [(K −1) Pa ]1/2

X n
a = X n

bWa + xb

wa = PaYbTR−1(yo − yb )
Wa

Globally: 

  w
a Wa
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Quasi Outer Loop (QOL)
 “Running in place” (RIP) for faster spin-up
 Use of future data in reanalysis
 Ability to use longer windows and nonlinear perturbations

tn tn-1 

Kalnay & Yang, 2010, Yang et al, 2012, 2013, Penny et al 2013 



Estimation of surface fluxes  
as evolving parameters  

  
Work of Ji-Sun Kang (now at KIAPS), with Kalnay, Liu and Fung. 
 
(Kang et al., 2011, JGR, Kang et al., 2012, JGR) 
 

•  important for carbon cycle  
•  surface fluxes of heat, moisture, and momentum  
•  eventually for coupled data assimilation 
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UMD-UCB LETKF-C System 
Parameter estimation:  
state vector augmentation 

–  Append CF (surface CO2 fluxes with no observations)  
–  Update CF as part of the data assimilation process 

•  Simultaneous assimilation of carbon and 
meteorological variables 
–  Multivariate analysis with a localization of the 

variables (Kang et al., 2011) 
–  Update all variables (including CF) every 6 hours 

Xb = X
CF

⎡

⎣
⎢

⎤

⎦
⎥

: model state vector 
  (U, V, T, q, Ps, C) 

: surface CO2 flux 

Observations 
U, V, T, q, Ps, C 

Forecast 
U, V, T, q, Ps, C 

LETKF (analysis) 
U, V, T, q, Ps, C, CF 



“One-way coupling” (Kang et al, JGR 2011) 

 

The winds improve the CO2, but the CO2 makes the 
winds worse. So we keep a one-way coupling 
rather than dropping the coupling completely. 



“Localization of variables” (Kang et al, JGR 2011) 

 

Schematic background error covariance matrix Pb.  
 Zeroing out the background error covariance 
between unrelated variables improves the result 
of the analysis by reducing sampling errors. 



Results: “Variable localization” reduces sampling errors 

AOSC department seminar, Oct. 20, 
2011 13 

True CO2 fluxes  

Analysis of CO2 fluxes 
with variable localization 

  

Analysis of CO2 fluxes 
without variable localization 

  

(anthropogenic) 



LETKF-C with SPEEDY-C 
•  Model: SPEEDY-C (Molteni, 2003; Kang, 2009) 

–  Spectral AGCM model with T30L7 
–  Prognostic variables: U, V, T, q, Ps, C 

•  C (atmospheric CO2): an inert tracer  
–  Persistence forecast of Carbon Fluxes (CF), no observations 

•  “True” CO2 fluxes: From CASA (Gurney et al, 2004) 
•  Simulated observations 

–  Rawinsonde observations of U, V, T, q, Ps 
–  Ground-based observations of atmospheric CO2  

•  18 hourly and 107 weekly data on the globe 
–  Remote sensing data of column mixing CO2  

•  AIRS whose averaging kernel peaks at mid-troposphere  
•  GOSAT whose averaging kernel is nearly uniform throughout the 

column 

•  Initial condition: random (no a-priori information) 
•  20 ensembles 



LETKF-C with SPEEDY-C 
•  Simulated observations 

–  Rawinsonde observations of U, V, T, q, Ps 
–  Ground-based observations of atmospheric CO2  

•  18 hourly and 107 weekly data on the globe 
–  Remote sensing data of column mixing CO2  

•  AIRS whose averaging kernel peaks at mid-troposphere  
•  GOSAT whose averaging kernel is nearly uniform throughout the 

column 

•  Initial conditions: random (no a-priori info) 
•  20 ensemble members 
•  No direct measurement of surface Carbon Fluxes 
•  CF only changes through the LETKF:  

persistence forecast. 



Impact	  of	  infla-on:	  fixed	  mul-plica-ve	  
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Time series of surface CO2 fluxes over East of North America 

adaptM+addi 
fixedM+addi 
fixedM 

Nature 
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adaptM+addi 
fixedM+addi 
fixedM 

Impact	  of	  infla-on:	  fixed	  mul-plica-ve+addi-ve	  

Time series of surface CO2 fluxes over East of North America 

adaptM+addi 
fixedM+addi 
fixedM 

Nature 
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adaptM+addi 
fixedM+addi 
fixedM 

Time series of surface CO2 fluxes over East of North America 

adaptM+addi 
fixedM+addi 
fixedM 

Impact	  of	  infla-on:	  Adap-ve	  mul-plica-ve+addi-ve	  

Nature 



▼  True CF ▼ ▼  Analysis of CF ▼ 

Results 
00Z01APR  
After three months of DA 

00Z01AUG  
After seven months of DA 

00Z01JAN  
After one year of DA 

We succeeded in estimating time-evolving CF at model-grid scale! 



Assimilation windows for Carbon fluxes inversion: 
current systems use a very long window 

•  CO2 data assimilation system 
–  A short assimilation window reduces the attenuation of observed 

CO2 information because the analysis system can use the strong 
correlation between C and CF before the transport of atmospheric 
CO2 blurs out the essential information of surface CO2 forcing 

–  We may not be able to reflect the optimal correlation between C and 
CF within a long assimilation window, which can introduce sampling 
errors into the EnKF analysis 



Long vs. short windows in LETKF-C 

•  OSSEs with SPEEDY-C 
–  Realistic observation distributions for meteorological variables 

and CO2 
•  Rawinsonde observation for (U, V, T, q, Ps)  
•  Ground-based observations, AIRS and GOSAT CO2 mixing ratio for C 

•  Experiment 1: Analysis from LETKF-C  
–  Simultaneous analysis with a 6-hour assimilation window 

•  Experiment 2: Analysis from a long (3-week) assimilation 
window  
–  With this long assimilation window, ensemble perturbations of 

meteorological variables become non-linear so that we do not 
include wind uncertainty for CO2 data assimilation (Carbon-
Univariate DA) 





A B 



Summary of LETKF-C carbon fluxes 

•  Assimilation window 
–  EnKF has better performance with a short 

window 
– CO2 observations may be able to provide 

some information to distant CF, but it 
becomes blurred (an ill-posed problem).  

•  Implement LETKF-C on the NCAR CAM 
model 
– OSSE with realistic observations 
– Very slow (only 26 days) 
–  Preliminary results are encouraging 



LETKF-C with NCAR CAM3.5 
•  Model: CAM 3.5  

–  Finite Volume dynamical core 
–  2.5°×1.9° of horizontal resolution with 26 layers in 

the vertical 
–  C (atmospheric CO2) is an inert tracer  
–  Persistence forecast of CF 

•  Simulated observations with real observation 
coverage 
–  Conventional data for U, V, T, q, Ps 
–  Ground-based observations of atmospheric CO2  

•  ~10 hourly and ~100 weekly records on the globe 
–  Remote sensing data of column mixing CO2  

•  AIRS whose averaging kernel peaks at mid-troposphere 
•  Initial conditions: random (no a-priori information) 
•  64 ensembles 



True CF @ initial time (00Z01JAN) Initial CF

True CF @ 00Z27JAN) CF analysis @ 00Z27JAN

10-8kgCO2/m2/s

LETKF-‐CAM	  3.5	  analysis	  a4er	  26	  days	  



Over a data rich region (Europe)     

Time series of surface CO2 fluxes and atmospheric 
CO2 concentrations over Europe   



Surface Heat and Moisture Fluxes 

•  Can we estimate surface moisture/heat fluxes by 
assimilating atmospheric moisture/temperature 
observations? We can use the same methodology… 

•  OSSEs 
–  Nature: SPEEDY (perfect model) 
–  Forecast model: SPEEDY with persistence forecast of 

Sensible/Latent heat fluxes (SHF/LHF) 
–  Observations: conventional observations of (U, V, T, 

q, Ps) and AIRS retrievals of (T, q) 
–  Analysis: U, V, T, q, Ps + SHF & LHF  

•  Fully multivariate data assimilation 
•  Adaptive multiplicative inflation + additive inflation 
•  Initial conditions: random (no a-priori information) 



True SHF @ end of JAN SHF analysis @ end of JAN 

True SHF @ end of JUN SHF analysis @ end of JUN 

(first, assimilating winds, but assuming perfect wind stress parameterization) 
Results:	  SHF	  

	  



True LHF @ end of JAN LHF analysis @ end of JAN 

True LHF @ end of JUN LHF analysis @ end of JUN 

Results: LHF  
 (assimilating wind, but assuming perfect wind stress parameterization) 



Time series of SHF  
(perfect wind stress parameterization) 



Time series of LHF  
(perfect wind stress parameterization) 



Can we also estimate wind stress? 
•  OSSEs 

– Nature: SPEEDY 
–  Forecast model: SPEEDY with persistence 

forecast of Sensible/Latent heat fluxes (SHF/
LHF) and wind stress (USTR, VSTR). 

– Observations: conventional observations of 
(U, V, T, q, Ps), AIRS retrievals of (T, q), and 
ASCAT ocean surface wind observations  

•  Observation error of ASCAT: 3.5m/s (not as good 
as AIRS data) 

•  ASCAT covers the global ocean every 12 hours, but 
with little overlap with AIRS. 

•  Analysis: U, V, T, q, Ps + SHF, LHF, USTR, VSTR  
•  Fully multivariate data assimilation 



Results diverge unless we 
increase the ensemble size 

RMSE: 
Blue: 80 ensembles 
Red: 40 ensembles 
Green: perfect WSTR with 40 
ensembles 

U 

T 

USTR 

SHF 

Doubling ensemble size reduces error 
but not enough to produce stable 
estimation of parameters throughout 
the analysis period. 

Stress is reasonable but SHF are 
underestimated and LHF are 
overestimated over oceans. Over land, 
with more observations, they seem 
good. 

 



Summary 
•  We have shown the feasibility of simultaneous analysis of 

meteorological and carbon variables within LETKF framework 
through OSSEs and short windows. 

•  The system LETKF-C has been tested in a intermediate-
complexity model SPEEDY-C with good results. 
–  Multivariate assimilation with localization of variables. 
–  Physical vertical localization. 
–  Additive and adaptive multiplicative inflation. 

•  Implementation of the LETKF-C to NCAR CAM 3.5 model: 
Analysis shows good performance in OSSEs with real 
observation coverage 

•  Application to estimation of surface fluxes of heat, moisture 
and momentum. 
–  Preliminary results are encouraging, although slowly 

divergent. Need more ensemble members. 


