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ABSTRACT

The semi-Lagrangian method is an established numerical technique for integrating the transport equations in
atmospheric models. Coupled with semi-implicit time-stepping offers unconditional stability for all forcing terms
in equation sets of such models. This distinct advantage has led to the development of very efficient numerical
weather prediction systems such as the ECMWF Integrated Forecasting System (IFS).

The highly accurate spectral transform, semi-Lagrangian IFS has been operating for over two decades and has
been continuously updated and improving. In this article, the main algorithms underpinning semi-Lagrangian
models are reviewed and work that continuously evolves towards improving these is summarized. Emphasis is
placed on current research topics such as noise problems in the stratosphere, the extratropical tropopause cold
bias and mass conservation. Finally, the question whether a semi-Lagrangian formulation can be a viable choice
at future super-computing architectures is briefly discussed.

1 Introduction

The semi-Lagrangian (SL) method is a widely used numerical technique for solving the transport equa-
tions in global weather prediction models. It is an unconditionally stable scheme which exhibits very
good phase speeds and little numerical dispersion. The practical result of these theoretical properties is
that it allows stable integrations with long timesteps, at CFL numbers much larger than unity, without
distorting the important Rossby waves. When a SL scheme is coupled with a semi-implicit (SI) time
discretization, long timesteps can be used in realistic atmospheric flow conditions where a multitude of
fast and slow processes coexist. Furthermore, the virtues of the Lagrangian and Eulerian approach are
combined in a single scheme: although a Lagrangian approach is used for advection, the transported
fields are remapped at every timestep to the model grid. The undesirable side-effects of large grid defor-
mation of the purely Lagrangian approach is therefore limited and physical processes can be accurately
computed.

The SLSI approach is currently the most popular option for operational global Numerical Weather Pre-
diction (NWP) models while it is often used in limited area modelling. Some examples of well known
global SLSI models in alphabetical order are: ARPEGE (Meteo France), GEM (Environment Canada),
GFS (NCEP), GSM (JMA), IFS (ECMWF), MetUM (UKMO). SLSI numerics have been used in the
ECMWF forecast model (IFS) since 1991. As discussed by Simmons (1991), the change from Eulerian
to semi-Lagrangian numerics improved the efficiency of IFS by a factor of six enabling thus a signifi-
cant resolution upgrade at that time. Since 1991, further successful upgrades followed and currently the
(high resolution) forecast model is run at 16 km resolution in grid-point space.

For a detailed description of the benefits of semi-Lagrangian modelling the reader can refer to the review
paper by Staniforth and Côté (1991). Here, we introduce the basic algorithms used in semi-Lagrangian
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computations with an emphasis in IFS formulation. This allows to demonstrate strengths and weak-
nesses of the SLSI approach and to discuss work towards improving further the quality of weather
forecasts within the framework of IFS.

2 Semi-Lagrangian solution of the advection problem

To present in a simple way the basic ideas underpinning the semi-Lagrangian method we consider the
continuity equation for a tracer field χ which predicts how its density ρχ changes as it is transported by
a wind field V:

Dρχ

Dt
=−ρχ∇ ·V,

D
Dt

=
∂

∂ t
+V ·∇, V = (u,v, η̇). (1)

In (1) η̇ denotes the vertical component of the wind, i.e. the derivative of the Simmons and Burridge
(1981) hybrid vertical coordinate η , a monotonic function of pressure which is terrain following near
the surface and flat near the top of the atmosphere.

It is common practice in SL models to use specific ratios φχ = ρχ/ρ rather than ρχ . Here, ρ is the air
density which satisfies the continuity equation:

Dρ

Dt
=−ρ∇ ·V. (2)

Using specific ratios, with the aid of (2), we can transform equation (1) in the simple pure advective
(without source terms) form:

Dφχ

Dt
= 0. (3)

Integrating (3) along the trajectory a fluid parcel follows in the time interval [t, t +∆t],∫ t+∆t

t
Dφχ = 0,

results to:
φ

t+∆t
χ,a = φ

t
χ,d .

Subscript letters a, d denote the so-called arrival and departure points. The former is the location of a
parcel at time t + ∆t and coincides with a grid-point. One timestep before, at time t, this parcel is at d.
Therefore, it is assumed that at each timestep, parcels depart from points d to arrive at grid-points. The
location of d is somewhere in the space between grid-points and has to be found. Therefore, to compute
the field at the new timestep t + ∆t it suffices to compute a departure point for each grid-point and find
(interpolate) the values of the transported field at these departure points.

In the equations that follow, for notational convenience, the arrival point subscript a will be omitted.
The basic steps in a semi-Lagrangian algorithm which solves the transport equation (3) are:

1. For each grid-point solve the following trajectory equation for the departure point (d.p.) rd:

Dr
Dt

= V(r, t)⇒ r︸︷︷︸
arrival g.p.

− rd︸︷︷︸
unknown d.p.

=
∫ t+∆t

t
V(r, t)dt (4)

2. Remap (interpolate) φ to rd to obtain
φ

t+∆t = φ
t
d
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2.1 Finding departure points

Solving the trajectory equation (4) requires the numerical approximation of a velocity integral. The
mid-point rule is a commonly used approach:

r− rd = ∆t V
(

r+ rd

2
, t +

∆t
2

)
. (5)

The time-dependent discrete trajectory equation (5) is solved for rd which is the d.p. of the grid-point
r. The velocity field value at the trajectory mid-point and at time t + ∆t/2 must be found first. The
usual technique is to use time-extrapolation and then interpolate the extrapolated velocity field at the
estimated mid-point. The second order extrapolation formula is often used:

Vt+∆t/2 = Vt +
∆t
2

∂Vt

∂ t
+O(∆t2) = Vt +

∆t
2

Vt −Vt−∆t

∆t
+O(∆t2)≈ 1.5Vt −0.5Vt−∆t

Summarizing, after the extrapolated field Vt+∆t/2 has been computed, the following fixed-point iteration
algorithm can be used to compute the departure point:

1. Initialise: rd
(1) = r−∆tVt

2. For ` = 2, . . . ,L:

(a) Interpolate Vt+∆t/2 to mid-point rm ≡ 0.5[r+ r(`−1)
d ]

(b) Update: rd
(`) = r−∆tVt+∆t/2 (rm)

Linear interpolation has been found to provide sufficiently accurate results for the interpolation of the
wind field in step 2(a) and it is the preferred option in most semi-Lagrangian models (Staniforth and
Côté, 1991). Furthermore, in IFS, step 2 is replaced by

rd
(`) = r− ∆t

2

[
Vt+∆t/2

(
rd

(`−1)
)

+Vt+∆t/2(r)
]

i.e. the mid-point wind is replaced by an average along the trajectory as according to Temperton et al.
(2001) the latter was found to reduce noise problems.

Pudikiewicz et al. (1985) give a sufficient condition for convergence of the above iterative procedure.
Quoting Staniforth and Côté (1991) this Lipschitz condition is that “the timestep ∆t should be smaller
than the reciprocal of the absolute maximum value of the wind-shear at each direction”. The geometric
interpretation of this condition, given by Smolarkiewicz and Pudykiewicz (1992), is that trajectories
do not intersect each-other. In practice this is satisfied for atmospheric flows and two iterations are
enough to obtain satisfactory (second order) accuracy, i.e. there is no further practical advantage by
keep iterating.

2.2 Interpolation

Essentially, through the SL discretization the advection problem is turned to an interpolation one. Al-
though linear interpolation is sufficiently accurate for the wind field when solving the trajectory equa-
tion, a high order scheme must be used for interpolating a transported field φ to the departure points. As
noted by Staniforth and Côté (1991) cubic Lagrange has been found to be a good compromise between
computational cost and accuracy.
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In IFS, instead of using a three-dimensional formula which is expensive, interpolation is applied at
each dimension separately. For example, on the sphere, interpolation to a d.p. (λd ,θd ,ηd) is done as
a sequence of three separate one-dimensional interpolations in λd (longitude), θd (latitude) and finally
ηd . The aim of the first interpolation is to find the field values at the d.p. longitude. These interpolated
values, all at the same longitude λd , are then interpolated to the d.p. latitude. Finally, the outcome of the
previous interpolations which represents values at the same longitude and latitude (vertically aligned) is
interpolated to ηd to obtain the interpolated field value at d. A three dimensional computational stencil
of neighbouring points (to the d.p.) is used. For a full cubic interpolation 64 points are required while
for the quasi-cubic interpolation used in IFS 32 are sufficient. Details can be found in the paper by
Ritchie et al. (1995). A quasi-monotone limiter such as the one by Bermejo and Staniforth (1992) is
often used to avoid generating new maxima or minima in the solution and avoid unphysical oscillations
(shape preservation).

3 Two time-level semi-Lagrangian semi-implicit integration

Having introduced the basic ideas behind semi-Lagrangian numerics we will now extend these to equa-
tion sets which include forcing terms such as the primitive hydrostatic set of IFS.

Consider the following set of prognostic equations (momentum components, temperature, continuity,
tracers):

DX
Dt

= F(X), X = (X1,X2, . . . ,XM) (6)

where M denotes the number of equations in the set and F is the forcing term. Integrating (6) along a
trajectory,

Xt+∆t −Xt
d

∆t
=
∫ t+∆t

t
F (X(t))dt (7)

and approximating the right-hand side integral using the second order trapezoidal scheme the following
SLSI discretization is obtained:

Xt+∆t −Xt
d

∆t
=

1
2
(
Ft

d +Ft+∆t) (8)

where the subscript d implies interpolation to the departure point. Equation (8) is an expensive and
complex one to solve due to its large dimension, its implicitness and in general its non-linear form (right
hand-side F includes non-linear terms). For this reason the approach used is to extract fast terms from
the right-hand side (e.g. the ones corresponding to gravity waves, or in the non-hydrostatic case the
acoustic terms as well) and linearise them around a constant reference profile. The right-hand side of
the forcing term is split to:

F = N+L

where L contains the linearised and fast linear terms which will be integrated implicitly and N the
remaining non-linear terms N = F−L which will be integrated explicitly. Following Temperton et al.
(2001), the two-time-level second order discretization of (8) may be written:

Xt+∆t −Xt
d

∆t
=

1
2
(
Lt

d +Lt+∆t)+ 1
2

(
Nt+∆t/2

d +Nt+∆t/2
)

. (9)

The nonlinear terms at t + ∆t/2 are computed by the same second order extrapolation formula used in
the departure point calculation:

Nt+∆t/2 = 1.5Nt −0.5Nt−∆t .

Once the right-hand side of (9) has been evaluated the semi-implicit system can be solved. To avoid
solving simultaneously all implicit equations in set (9), a Helmholtz equation is derived from these. In
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spectral transform IFS this is formulated as a constant matrix coefficient problem in terms of horizontal
divergence (see Ritchie et al., 1995). Using properties of spherical harmonics the Helmholtz equation
can be solved very efficiently in spectral space. Once divergence has been corrected by the Helmholtz
solver then all prognostic variables can be updated through back-substitution.

3.1 Iterative Centred Implicit Scheme

The advantage of the approach described in section 2.1 is its low computational cost. However, the
extrapolations used may occasionally result in loss of stability which is manifested as noise in the
stratosphere. One way to overcome this problem while maintaining second order accuracy is to use
an iterative centred implicit approach (ICI) such as the one described by the following steps:

1. Apply standard semi-implicit scheme (9) with time-extrapolation where required to obtain a pre-
dictor for X:

X(0) ≈ Xt+∆t .

2. For k = 1,2, . . . ,K apply again the semi-implicit scheme but now using time-interpolation in place
of extrapolation:

Use Vt+∆t/2 = 0.5
[
V(k−1) +Vt

]
, V(k−1) ≈ Vt+∆t in trajectory solver iterations

Use Nt+∆t/2 = 0.5
[
N(k−1) +Nt

]
, N(k−1) ≈ Nt+∆t in:

X(k)−Xt
d

∆t
=

1
2

(
Lt

d +L(k)
)

+
1
2

(
Nt+∆t/2

d +Nt+∆t/2
)

3. At final iteration: Xt+∆t = X(k).

In practice, one extra iteration (k = 1) suffices to eliminate noise and obtain a stable solution. However,
despite its benefits, the ICI scheme is avoided in operational IFS runs as it doubles the computational cost
of the dynamics. Instead, the technique described in the following section is what is used operationally.

3.2 SETTLS: Stable Extrapolation Two-Time-Level Scheme

SETTLS by Hortal (2002) is a more stable alternative to the standard extrapolation technique analysed
in previous sections which is also second order accurate. It is derived by a Taylor series expansion:

Ψ
t+∆t ≈Ψ

t
d +∆t

(
dΨ

dt

)
d
+

∆t2

2

(
d2Ψ

dt2

)
AV

where AV denotes an “average along the semi-Lagrangian trajectory” during the timestep from t to
t +∆t.

If Ψ obeys
dΨ

dt
= R, taking into account the approximation

(
d2Ψ

dt2

)
AV
≈ R(t)−Rd(t−∆t)

∆t
results to:

Ψ
t+∆t ≈Ψ

t
d +

∆t
2
(
Rt +

[
2Rt −Rt−∆t]

d

)
(10)

where the subscript d denotes interpolation to the departure point. Using Taylor series expansion we
may verify that

Rt+∆t/2
m ≈ 1

2
(
Rt +

[
2Rt −Rt−∆t]

d

)
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is a second order accurate approximation at the trajectory mid-point m and at time t +∆t/2. Following
Hortal (2002), formula (10) can be used for extrapolating the wind fields when solving the trajectory
equation as well as for extrapolating the non-linear terms:

• to find departure points iterate:

r(`)
d =

{
r−∆tVt , ` = 1
r−0.5∆t

(
Vt +

[
2Vt −Vt−∆t

]
d(`−1)

)
, ` > 1

(11)

interpolating the square bracketed terms at latest available estimate of the departure point

• replace the non-linear terms in (9) by:

Nt+∆t/2
m = 0.5

(
Nt +

[
2Nt −Nt−∆t]

d

)
. (12)

Operational implementation of SETTLS in IFS (April 1998) eliminated the noise problem in all areas
except for the upper part of the stratosphere where it persisted in occasions in which the stratospheric
night polar jet is shifted away from the poles. An example can be seen in Fig. 1 where the horizontal
divergence field from a forecast at t+24 hrs, starting at t = 15/01/2012 12 UTC, is plotted at heights
of 5 hPa and 1 hPa. According to Hortal (2004) this noise can be attributed to a non-linear feedback
between the extrapolatory mechanism for computing the vertical component of the departure point and
the solution of the evolution equations. Although the associated instability is too weak to cause a model
failure during a 10 day forecast and it is limited in the upper part of the stratosphere it does seem to
seriously affect the data assimilation scheme: satellite data rejections occur due to a mismatch between
the (noisy) background forecast fields and the observations. It is therefore important to eliminate this
noise which was achieved introducing some smoothing of the vertical component of the velocity (see
Hortal, 2004).

Figure 1: 5hPa horizontal divergence field at t+24 hrs from an IFS forecast starting at t = 15/01/2012
12 UTC and using SETTLS.

3.3 Limiting SETTLS when computing trajectories

Vertical velocity smoothing improves the stability of the IFS SLSI scheme but it was found to cause a
degradation of stratospheric skill scores. For this reason a filter for SETTLS scheme has been recently
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developed to be applied at upper model levels (e.g. those at heights above 60 hPa) when computing the
vertical component of the departure point. This scheme replaces (11) in the vertical only for ` > 1 by:

ηd[`] =


η−0.5∆t

(
η̇ t +

[
2η̇ t − η̇ t−∆t

]
d[`−1]

)
,
∣∣η̇ t − η̇ t−∆t

∣∣≤ 0.5β
(
|η̇ t |+

∣∣η̇ t−∆t
∣∣)

η−0.5∆t
(

η̇ t + η̇ t
d[`−1]

)
,

∣∣η̇ t − η̇ t−∆t
∣∣> 0.5β

(
|η̇ t |+

∣∣η̇ t−∆t
∣∣) (13)

where, 0 < β < 2. It is a composite between SETTLS and an alternative scheme which resembles the
trapezoidal method:

ηd = η−0.5∆t
(
η̇

t+∆t − η̇
t
d
)
.

The difference is that η̇ t+∆t above is approximated by the simple first-order, one-term extrapolation
η̇ t+∆t ≈ η̇ t . Asymptotically, the principal difference between the two branches of (13) is

(∆t)2

2

(
∂ η̇

∂ t

)t

d

which is a small term when the vertical velocity is slowly changing in time.

The condition used in (13) is a simple criterion to decide which points have potential to develop in-
stability. This heuristic rule essentially compares the magnitude of the η̇ jump during two consecutive
timesteps with a two-timestep average of the η̇ magnitude. Big jumps are likely to be an indication of
instability and when this occurs the alternative to SETTLS is activated. Second order, two-term extrap-
olations may have higher accuracy asymptotically than first order, one-term extrapolation schemes but
are prone to instabilities.

Figure 2: 5hPa horizontal divergence field at t +24 hrs for a forecast starting at t = 15/01/2012 12 UTC
and using SETTLS filter.

The parameter β in (13) controls how strict is the test: for β ≥ 2 SETTLS will be applied on all grid-
points while for β ≤ 0 the alternative scheme will be applied everywhere. Tests for different β values
have been done suggesting that even a value as large as 1.99 is sufficient to stop the problem occur-
ring. Values smaller than but near 2 penalize points that jump from negative to positive values within
a timestep as well as those that maintain the same sign but exhibit big jumps. In this case only about
5%− 10% of the points per level were filtered i.e. SETTLS was switched off on these points. So, in
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practice we maintain second order of accuracy in the trajectory calculation except for the points which
are most likely to develop an instability.

The forecast corresponding to Fig. 1 has been repeated applying the new filter at upper model levels
where the pressure falls below 60hPa. The results are plotted in Fig. 2 and demonstrate that noise has
been completely eliminated. Furthermore, analysis experiments (4D-VAR trials) strongly indicate that
use of this filter has a big positive impact in the forecast skill in the upper stratosphere and increases
significantly the number of observations being assimilated due to the fact that these are not rejected. This
is the result of enhanced stability leading to smooth temperature forecasts which have values close to
observations. The impact is shown in Fig. 3 where it is evident that the temperature difference between
the background forecast and observations is smallest when the filter is used. The velocity smoothing
scheme improves noticeably but does not eliminate the problem.

(a) Control FC (b) Smoothing η̇

(c) SETTLS traj limiter

Figure 3: Temperature difference for METOP-A AMSU-A observations (channel 13) minus background
forecast at t = 12 UTC 15/01/12.

4 The cold bias systematic error

The extra-tropical tropopause cold bias is a systematic error occurring in IFS as well as in other semi-
Lagrangian models. As explained by Stenke et al. (2008) who investigated this problem using a semi-
Lagrangian version of ECHAM4 GCM, this bias is due to water vapour overestimation in lower ex-
tratropical stratosphere which leads to radiative cooling. A significant contributing factor to this moist
bias is the combination of enhanced horizontal numerical diffusion of semi-Lagrangian schemes and
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the existing strong meridional gradient of water vapour between the tropical upper troposphere and the
extratropical lowermost stratosphere. This diffusive behaviour can be attributed to the lack of adequate
resolution to resolve accurately steep gradients and the diffusive properties of the interpolation schemes
in general.
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Figure 4: Forecast minus ERAI temperature field, zonally and time averaged, from four 12-month
forecasts.

The cold bias can be clearly seen in Fig. 4 where the difference between the time averaged zonal mean
of the temperature field for four twelve month forecasts and the corresponding ERAI (ERA interim)
field is plotted. Tests recently done with IFS broadly agree with the findings of Stenke et al. (2008) and
give further useful guidance on how to reduce the cold bias. Overall, they suggest that the modeled cold
bias is a problem clearly sensitive to the numerical schemes applied in dynamics. Large sensitivity was
found in the method used to interpolate horizontally the specific humidity field to the departure point
and to the method used to interpolate the wind field during the departure point calculation.

The sensitivity with respect to the quasi-monotone limiter for specific humidity is striking. We remind
that this is done to stop the interpolation scheme generating new local minimum and maximum values
which are deemed artificial (although in some cases they may be actually true due to lack of sufficient
resolution). Limiting the horizontal interpolation only and not the vertical part did not show any im-
provement. Removing both horizontal and vertical limiting had a big positive impact, i.e. it reduced the
cooling. This shows in Fig. 5a. Furthermore, the following modifications to the quasi-monotone limiter
were tested:

(a) Using the standard Bermejo and Staniforth (1992) quasi-monotone limiter as opposed to the IFS
default one (Fig. 5b). The difference is that the former is limiting the solution (interpolated values)
after the three one-dimensional interpolations have been completed (in longitude, latitude, height)
while the latter is limiting immediately after each one-dimensional interpolation.

(b) Applying the same limiter as in (b) but also making a compensating correction for each grid-point
field value which has been limited (Fig. 5c). Briefly this works as follows:

1. Interpolate humidity field to the computed departure point

2. Starting from top model level limit each grid-point at current level using Bermejo & Stan-
iforth scheme and store the mass the limiter has removed from or added to the grid-point
value.
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3. The mass that has been removed/added by the limiter is added/removed at the grid-point
directly below.

4. Move one level below and repeat the above process until reaching the level above surface.

This procedure has the additional benefit of improving mass conservation as no mass is lost or
gained as a result of the action of the limiter.
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Figure 5: Difference of experiment from control of time averaged zonal mean temperature for runs with
different dynamics options: (a) quasi-monotone limiter off and use of negative fixer (b) Bermejo &
Staniforth quasi-monotone limiter (c) same as (b) but with compensating correction (d) cubic Hermite
interpolation with derivative limiting in the vertical.

Using alternative schemes for interpolating in the vertical such as cubic Hermite interpolation with
smoother, derivative limiting as suggested by Hyman (1983) also shows sensitivity and often a benefit
(see Fig. 5d). However, the resulting warming spreads higher in the upper stratosphere in regions that
there is already a warm bias.

Other “dynamics” parameters or schemes available in IFS have also been tested. Summarizing these
tests, sensitivity was found in reducing the timestep, using ICI scheme, introducing off-centring in the
semi-implicit scheme, switching off quasi-monotone limiter in the continuity equation (surface pressure
advection). None of these tests demonstrated a benefit similar to the one found by changing the quasi-
monotone limiter for specific humidity as discussed in the previous paragraph.
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Figure 6: Difference of experiment from control (cf. Fig.5) when (a) smoothing vertical velocity is used
and (b) when SETTLS filter is used.

The cold bias sensitivity with respect to options for solving the semi-Lagrangian trajectory equation has
also been tested. In particular the impact of smoothing vertical velocities and of the SETTLS filter intro-
duced in section 3. Results from these tests are shown in Fig. 6 and suggest that smoothing exaggerates
the cooling while the SETTLS filter has a small benefit. In this test, the filter was applied from the top
of the model atmosphere down to levels near the 100hPa pressure level.

5 Mass conservation in IFS

Conventional semi-Lagrangian transport schemes used in NWP cannot formally conserve mass. Lack
of formal mass conservation is important for the long time integrations typical in climate simulations
but is not crucial for short and medium range NWP forecasts. Due to the good accuracy of the SLSI
method the resulting mass conservation error is usually small. For example, in a 10-day IFS forecast,
at T1279 horizontal spectral resolution (approximately 16km in grid-point space) and 137 levels in the
vertical, the total model air mass is increasing by less than 0.01% of its initial value. The formulation of
the continuity equation in IFS, based on Ritchie and Tanguay (1996) scheme (see also ECMWF (2012)
section 3.6.2), plays an important role into achieving this good accuracy. Orography is subtracted from
the advected mass field resulting in a much smoother field which can be accurately interpolated to the
departure points.

Although total air mass conservation error in IFS is small, it turns to be much larger when individual
tracers are considered. As NWP models become more complex and used as environmental prediction
systems where large number of tracers are advected, the requirement for conservative schemes becomes
more important. Furthermore, as the resolution increases towards cloud resolving scales, where accu-
rate conservation of moisture at the local scale can be important for resolving buoyancy, it becomes
increasingly desirable to have a mass conserving advection scheme.

Global mass conservation errors in tracer advection depend on the smoothness of the field, i.e. smoother
fields such as ozone and specific humidity have much smaller conservation errors than fields with sharp
features such as cloud fields. This is demonstrated in Fig. 7 where the global conservation error (as a
percentage of the initial total mass of the advected tracer) is displayed for: ozone, specific humidity (Q),
cloud liquid water content (CLWC), cloud ice water content (CIWC). A conservative scheme would
have been represented in this plot by a line identical with the horizontal 0-axis; the closer to the hori-
zontal axis a curve is the smaller the mass conservation error. In these experiments, parametrizations
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have been switched off to isolate sources and sinks and allow testing the performance of the advection
scheme in realistically complex terrain. The errors for the two cloud fields CLWC, CIWC have been
assessed separately with the quasi-monotone, quasi-cubic ECMWF interpolation scheme and the linear
interpolation scheme (indicated with LIN in plots). The former choice is used operationally in the model
for Q and ozone and other aerosols while the later is used for the rougher cloud fields. The experiments
are run at different horizontal and vertical resolutions: (i) T159 L60 i.e. T159 in the horizontal with 60
levels in the vertical (ii) T159 L91 (iii) T1279 L91 and (iv) T1279 L137. To allow direct comparisons of
the per timestep mass conservation error, the four top forecasts in Fig. 7 have run for the same number
of timesteps. At coarse horizontal resolution (T159) the timestep is 6 times longer (60 mins) than the
corresponding timestep for high resolution (T1279).

(a) T159 L60 (b) T159 L91

(c) T1279 L91 (d) T1279 L137

Figure 7: Global mass budgets for ozone, Q, CLWC,CIWC at different resolutions.

The overall impression from these results is that the global mass conservation error per timestep tends
to decrease as the resolution increases. This may not be a precise statement for every tracer but gives
a strong indication of a reduction of the error per timestep as resolution is refined especially when this
error is large. So apart of the expected improvement in forecasting accuracy obtained with increased
resolution an improvement in global mass conservation is achieved as well. For cubic interpolation,
increase of horizontal resolution results to a noticeable reduction of the global tracer mass error, in
particular for CLWC, CIWC. Increasing the vertical resolution seems to have a small positive impact for
the smoother fields (Q, ozone). For the linearly interpolated fields, increasing vertical resolution, leads
to a reduction of their global mass error. Increasing horizontal resolution improves ’LIN CLWC’ but
leaves relatively un-affected ’LIN CIWC’ which is the most localised and least smooth.
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5.1 The mass fixer approach

There is a class of semi-Lagrangian schemes, the so called inherently conserving schemes, which are
able to achieve global, local and consistent mass conservation for all transported fields. Two typical ex-
amples are SLICE Zerroukat and Allen (2012) and CSLAM Lauritzen et al. (2010). Such schemes are
essentially an application of a finite-volume type discretization approach on the semi-Lagrangian con-
tinuity equation. Despite having desirable theoretical properties these schemes are in general complex
to implement for a three-dimensional set up which includes orography. Significant changes are required
in the standard semi-Lagrangian formulation and the computational cost of these algorithms can easily
double compared with traditional semi-Lagrangian schemes. However, this is an active area of research
and although currently inherently conserving schemes are not used in forecasting operations, further
improvements may enable their use in applications, especially when multiple tracers are transported.
An example of a recent relevant development is given in the paper by Sørensen et al. (2013).

An alternative low computational cost approach which has been used for several years by semi-Lagrangian
climate and atmospheric chemical transport models is the so called “mass fixer” algorithm. The practice
is to perform first the standard semi-Lagrangian advection step, i.e. to find first the departure points,
interpolate the advected field to them and finally to correct the solution in order to satisfy global mass
conservation.

There is currently a range of mass fixer algorithms published in the literature. In general, any mass fixer
will compute the global mass before and after the advection step (interpolation to the departure points)
and calculate its difference which gives the global mass conservation error at this step. Once the mass
conservation error has been computed, then a very small amount of mass is added or subtracted from
each grid-point. The global sum of this correction is equal (having an opposite sign) to the global mass
conservation error. A sensible strategy, used by several mass fixer algorithms, is to compute a correction
which is proportional to the smoothness of the solution. A larger correction is computed in areas where
the solution has large gradients and therefore the error is large and a very small correction where the
solution is smooth and the error is small.

Figure 8: Global mass budgets for Q, CLWC at T1279 resolution forecast with/without mass fixers.

The following mass fixers have been recently implemented in IFS and are currently under evaluation:

1. The quasi-monotone Bermejo and Conde (2002) algorithm.

2. The quasi-monotone Priestley (1993) algorithm.

3. MacGregor (2011) scheme originally developed for climate model C-CAM.
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The first two of these fixers are using the mass correction strategy mentioned above while the third one
is using a simpler lower cost strategy in which the correction is proportional to the advective increment
and depends also on its sign. Details can be found in the respective references.

The impact of applying mass fixers on specific humidity (Q) and cloud liquid water content (CLWC)
fields is demonstrated in Fig. 8. The global mass conservation error for the tracer drops to 0, i.e. the
advection is now globally conserving. It is also interesting to see how the mass fixer acts locally. This
can be seen in Fig. 9 where the correction field for Q at t+24 hrs forecast step, computed by the Bermejo
& Conde fixer, is plotted. The fact that the increments are larger in areas of large gradients and very
small where the field is smooth demonstrates that the local criterion used by the fixer achieves what is
expected.

(a) Q field

(b) Fixer correction field

Figure 9: Mass fixer increment for the specific humidity field from Bermejo & Conde algorithm at step
t+24 hrs and near 700 hPa height.

A natural area for applying mass fixers is applications where chemical species are transported. For such
applications, it is additionally important to mass conservation that existing functional relationships in
their concentration are maintained by the advection scheme (see Lauritzen and Thuburn, 2012). The
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ability of IFS and the newly developed fixers to preserve such relationships has been tested using case
1.1 from DCMIP (Dynamical Core Model Intercomparison Project, see Ulrich et al., 2012). This is
a three-dimensional passive advection deformational flow idealised test case in which four tracers are
transported. The first two tracer fields q1, q2 are correlated by the non-linear relation:

q2(λ ,θ ,z) = 0.9−0.8q2
1(λ ,θ ,z)

where λ , θ , z is the longitude, latitude and height of a tracer. The first one is represented by two cosine
bells placed at the same height and latitude but at different longitudes.

Results for this test case from IFS runs at T159 horizontal resolution and 137 levels in the vertical1 are
plotted in Fig. 10. These are correlation plots for the pair (q1,q2) at t = 6 days after the initial time
(which is half the time required for the tracers to complete one full rotation around the earth). The initial
concentration of these tracers is given by the parabolic part of the dash-dotted black curve. Pairs (q1,q2),
represented by red dots, falling outside the region indicated by the dashed-dotted convex envelope cor-
respond to unphysical mixing ratios. Ideally, the red region should stay within the convex envelope and
follow the curve closely, spreading evenly and thinly on it. Fig.10 shows that semi-Lagrangian transport
with linear interpolation is excessively diffusive but does not produce any unphysical mixing. The op-
posite is true when cubic Lagrange is used. Significant improvement can be noticed when the Bermejo
and Staniforth (1992) quasi-monotone limiter is used. However, it does not eliminate completely the un-
physical mixing. Using Bermejo and Conde (2002) or Priestley (1993) mass fixer algorithms improves
further as it results in better preservation of the existing functional relationship. Mac Gregor’s fixer did
not show an improvement in this respect for this case.

(a) linear (b) cubic (c) cubic with qm limiter

(d) Bermejo & Conde fixer (e) Priestley fixer (f) Mac-Gregor’s fixer

Figure 10: Scatter plots for tracers (q1,q2) at t = 6 days for an initial concentration which follows the
upper black dashed-dotted curve.

Further testing of these algorithms has shown that for short and medium range NWP forecasts their
impact in terms of skill scores is neutral while for long-range forecasts the impact on fields such as
temperature is positive (reduced errors). These algorithms are currently tested to establish how they

1This horizontal and vertical resolution is close to the recommended for this problem.
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perform in environmental-chemical forecasts and to determine if a benefit can be found in high resolution
non-hydrostatic scale forecasts.

6 Conclusions

The semi-Lagrangian, semi-implicit technique is an established numerical method in weather prediction
and more generally in atmospheric modelling. Being a highly efficient technique it has enabled the
implementation of robust high resolution NWP systems and has contributed in the improvement of
weather forecasts.

As explained in this paper, apart of the great strengths of SLSI, there are some weak areas as well. Its
theoretical unconditional stability is limited by time extrapolations used for computing the SL trajec-
tories and for evaluating the non-linear right-hand side terms in the semi-implicit scheme. Systematic
errors such as the extratropical tropopause cold temperature bias and lack of formal mass conservation
are two other disadvantages. In ECMWF we are currently working on these long-standing issues aim-
ing to improve accuracy and robustness of IFS at different resolutions and forecast timescales. Some
relevant work has been summarized here showing potential for operational implementation. Research
and development in this area continues and we hope to be able to implement further improvements in
the near future.

Developments in atmospheric modelling follow developments in super-computing industry. As hard-
ware manufacturers have stopped producing CPUs with faster clock speeds the only practical way to
increase computing power and tackle larger size problems is through increased parallelism. In recent
years there has been a gradual shift to massively parallel computing architectures and it is foreseen
that exascale machines will be available for the meteorological community the next decade. The issue
of scalability of numerical techniques currently used in atmospheric modelling is becoming a central
one, especially as resolutions of global models are gradually shifting to scales not permitting the hydro-
static approximation. For such model resolutions and massively parallel architectures, latitude-longitude
regular grids become highly anisotropic in physical space. For explicit Eulerian schemes this implies
large restriction to the timestep which makes their use impractical. On the other hand, for semi-implicit
schemes the main limiting factor is high cost of communication for implicit solvers and slow conver-
gence rates.

For SLSI schemes on quasi-uniform grids, in particular for spectral transform methods on reduced Gaus-
sian grids such as the IFS, the high cost of Legendre transforms is an important limiting factor. Recently
Wedi et al. (2013) have shown how a significant reduction of this cost may be achieved. Despite these
significant improvements, there are still outstanding issues. Two important ones are the high commu-
nication cost of global transpositions and the viability of the constant coefficient approach in the semi-
implicit system. The latter offers the advantage of a very low computational cost Helmholtz solver but
requires explicit handling of orographic forcing. Lack of formal conservation in traditional SL models,
as opposed to Eulerian flux-form models, is a further drawback and currently an active research topic in
the semi-Lagrangian community.

The question of how efficient the SL approach may be in future also depends on the type of forecast
considered. For example for applications where many tracers are transported the semi-Lagrangian tech-
nique has an advantage as transport can be done very cheaply - there is no need to solve a prognostic
equation for each tracer. All is required is one interpolation per tracer to the departure points which are
calculated only once per timestep.

The above discussion highlights that it is not easy to predict for how much longer the semi-Lagrangian
approach will continue to be used in atmospheric modelling. However, on the basis of current knowl-
edge, we can safely predict that the semi-Lagrangian IFS will be operating at least until the beginning
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of next decade and will continue to deliver improved weather forecasts.
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