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ABSTRACT

The paper describes a limited area non-hydrostatic model operating on fully unstructured meshes with a collocated
arrangement of flow variables. The model belongs to a non-oscillatory forward-in-time (NFT) class of solvers and
combines the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) and a robust non-
symmetric Krylov-subspace elliptic solver. It employs a finite volume spatial discretisation with edge-based data
structure implemented on unstructured meshes that admit arbitrarily shaped cells. Numerical examples illustrate
mesh flexibility offered by the proposed approach, including mesh adaptivity using MPDATA based error indica-
tor.

1 Introduction

Atmospheric flows evince fluid motions ranging from dissipation scales as small as a fraction of a
millimetre, to planetary scales of thousands of kilometres. For some problems, such as weather con-
ditions in long winding valleys, tropical storms or hurricane forecasting, inadequacies in traditional
structured mesh (grid) resolution may limit the accuracy attainable with available resources. In contrast,
unstructured-meshes and mesh adaptivity offer flexibility that can address the increasing resolution re-
quirements.

The paper describes an implementation of the three-dimensional, high-resolution, non-hydrostatic, lim-
ited area model for flexible fully unstructured meshes. The model derived in [15] exploits non-oscillatory
control volume integrators for rotating stably-stratified flows that use a non-oscillatory forward-in-time
(NFT) approach, analogous to that employed in the non-hydrostatic all-scale, multi-physics structured
gid models reviewed in [7]. NFT labels a class of second-order-accurate two-time-level algorithms built
on nonlinear advection techniques that suppress/reduce/control numerical oscillations characteristic of
higher-order linear schemes; and it is meant to distinguish these algorithms from classical centered-in-
time-and-space linear methods. The model admits several soundproof systems, including the classical
incompressible Boussinesq [17], anelastic Lipps-Hemler [5, 6] and Durran pseudo-incompressible [1]
partial differential equations. It utilises the non-oscillatory advection scheme MPDATA, derived for
unstructured meshes from first principles in [11, 12]. The solution of the elliptic Poisson equation, im-
plied by the soundproof mass-continuity constraint, employs a robust non-symmetric Krylov-subspace
solver detailed in [14]. In [15], the model performance was demonstrated on dual meshes constructed
from primary prismatic meshes with triangular and quadrilateral bases. This paper extends the model
applicability to dual meshes built on primary tetrahedral meshes.

The two-dimensional option of the non-hydrostatic NFT MPDATA scheme [20, 14] verified the accu-
racy of the two-dimensional edge-based approach using benchmarks from both analytic and laboratory
results, and comparing unstructured mesh results to the corresponding structured grid model results for
simulations of non-hydrostatic mountain waves at weak and strong background stratifications with lin-
ear and nonlinear flow response, respectively. Herein, we employ the two dimensional non-hydrostatic
model option to demonstrate the flexibility of unstructured meshes in the context of static adaptive mesh
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refinement. An a posteriori error indicator that drives the mesh refinement arises from the properties of
MPDATA [18].

Our developments of the non-hydrostatic modeling using unstructured-mesh NFT framework have so
far addressed mesoscale orographic flows, with a range of internal gravity wave phenomena in two
and three spatial dimensions [20, 14, 15]. Furthermore, LES of convective planetary boundary layer
[15] demonstrated suitability of the approach for accurate simulation of high-Reynolds-number thermal
convection, with stochastic flow realisations but predicable integral characteristics. The hydrostatic
modeling has been addressed in the earlier NFT MPDATA developments. It included generalisations
of shallow-water equations to global spherical geometry [19], and a class of three dimensional global
models [19, 20] that employ a classical geospherical reference frame, with the governing equations
cast in the latitude-longitude surface-based coordinates. Noteworthy, notorious issues associated with
meridians convergence near the poles were resolved by exploiting the flexibility of unstructured mesh
discretisation. A corresponding unstructured mesh finite volume NFT framework was also formulated
for modeling all-speed engineering flows [18, 13]. The numerical results presented here capture the
key aspects of canonical flow problems for limited area gravity wave dynamics and flows over complex
terrain.

2 Numerical algorithm

2.1 Non-oscillatory forward in time integration

The numerical solutions presented in the paper are obtained by integrating either the incompressible
Boussinesq or the anelastic Lipps-Hemler PDEs. In both cases, the governing conservation laws of
mass, momentum and thermodynamic properties can be compactly written as

∇ · (Vρo) = 0 , (1)
∂ρoV I

∂ t
+∇ · (VρoV I) = ρo

(
− ∂ p̃

∂xI +g
θ ′

θo
δI3

)
,

∂ρoθ

∂ t
+∇ · (Vρoθ) = 0 .

Here, ρ , θ and p denote the density, potential temperature and pressure, and the normalised pressure
perturbation p̃ ≡ p′/ρo. For I = 1,2, the velocity components refer to the horizontal directions x1 ≡ x,
x2 ≡ y with V 1 ≡ u, V 2 ≡ v; whereas in the vertical I = 3 with x3 ≡ z and V 3 ≡ w. Subscripts o

denote the static reference state, while primes denote perturbations with respect to a hydrostatically
balanced ambient state. In the Boussinesq case, constant ρo and θo imply po ∝ z; whereas in the anelastic
case vertical profiles ρo(z) and po(z) are defined in terms of a constant stratification So = N2/g — so
θo ∝ exp(Soz) — where g(= 9.81 ms−2) and N denote the gravitational acceleration and the buoyancy
frequency, respectively. In examples discussed in this paper the ambient states assume constant wind U
and thermodynamic profiles defined by So according to the hydrostatic balance of the governing PDEs.

For the construction of numerical solution to the momentum and the potential temperature equation in
(1), the generic NFT template algorithm is applied

∀i,n Φ
n+1
i = Ai

(
Φ

n +0.5δ tRn, VVV n+1/2,ρo
)
+0.5δ tRn+1

i (2)

≡ Ai
(
Φ̃, VVV n+1/2,ρo

)
+0.5δ tRn+1

i

≡ Φ̂i +0.5δ tRn+1
i ,

with Φ symbolising a dependent flow variable V I or θ and R denoting the ratio of the associated rhs in
(1) to ρo. Indices n and i have their usual meaning of the temporal and spatial positions. The operator A
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is a shorthand for the edge-based MPDATA [12], and it already accounts for a division of conservative
variables ρoΦ by ρo. The VVV n+1/2 argument of A denotes a O(δ t2) estimate of ρoV at t + 0.5δ t;
whereas Rn+1 is a second-order-accurate finite volume representation of R; see [16] in the same volume
for a discussion.

In its simplest form, the solution commences with the linear extrapolation of advective mass flux

VVV
n+1/2
i = 1.5VVV n

i −0.5VVV n−1
i , (3)

followed by the computation of auxiliary variables

Ṽi = Vn
i −0.5δ t

(
∇ p̃−g

θ ′

θo
k
)n

i
, (4)

θ̃i = θ
n
i ,

and their subsequent MPDATA transport supplying V̂ and θ̂ in (2); here k = ∇z denotes the unit vector
in the vertical. For inviscid adiabatic flows, θ̂ ≡ θ n+1 completes the solution of the potential temperature
equation, thus providing an O(δ t3) estimate of the buoyancy force on the rhs of the vertical momentum
equation. In consequence, in the corresponding realizations of (2) for the momentum equation,

Vn+1
i = V̂i−0.5δ t

(
∇p̃−g

θ ′

θo
k
)n+1

i
, (5)

the components of the pressure gradient ∇ p̃n+1 are the only unknowns on the rhs. The discrete elliptic
Poisson problem for pressure can be now formed by applying the discrete divergence operator to ρo×(5)
and noting that ∇i ·

(
ρoV)n+1 must vanish on the left-hand-side due to the continuity constraint in (1):

∀i ∇i ·ρo

(̂̂V−0.5δ t∇p̃n+1
)

= 0 , (6)

where ̂̂V = V̂ + 0.5δ tg(θ ′/θo)n+1k forms the explicit part of the problem. The resulting system (6) is
solved to a specified tolerance using the preconditioned generalized conjugate residual algorithm; cf.
[14]. Given the solution to (6), combining the updated buoyancy and pressure-gradient components on
the rhs of (5) completes the solution. For more elaborate semi-implicit NFT algorithms implemented on
structured meshes that account for implicit representations of the buoyancy and Coriolis forces see [16]
in the same volume.

The spatial discretisation assumed in the template algorithm (2) uses the edge-based median-dual finite
volume approach [12] integrating the generic physical form of the governing PDE over arbitrarily-
shaped cells. A schematic of the edge-based data structure for an arbitrary hybrid mesh on a 2D plane
is shown in Figure 1. The median-dual finite volume approach constructs the control volume associated
with the vertex i by joining the centres of polygonal mesh cells encompassing the vertex i and midpoints
of edges originating in the vertex i, Figure 1. Having defined the mesh in planar geometry, all geometric
elements such as cell volume, cell face area, and normals are evaluated from vector calculus. All solution
variables are collocated in the vertexes. The construction of a dual mesh in three dimensions is similar.
Figure 2 illustrates a control volume cell face associated with the edge, formed by joining barycenters
of the primary mesh and centres of primary mesh element faces.

2.2 MPDATA error indicator for mesh adaptivity

The finite volume discretisation with the edge-based data structure is well suited for investigating refined
mesh-point distributions. In particular, this includes a flexible use of mesh adaptivity techniques, for
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i j

Figure 1: The edge-based, median-dual
approach in 2D. The edge connecting ver-
tices i and j of the primary polygonal mesh
pierces, precisely in its middle, the face
S j shared by computational dual cells sur-
rounding vertices i and j; open circles rep-
resent barycenters of the primary mesh,
while solid and dashed lines mark primary
and dual meshes, respectively.

j

i

Figure 2: The edge-based median-dual ap-
proach in 3D. The edge connecting ver-
tices i and j of the primary mesh pierces
(at the edge center) the face S j of a com-
putational (dual) cell surrounding vertex i;
open circles represent barycenters of poly-
hedral cells surrounding the edge. Dashed
lines mark a fragment of the dual mesh; cf.
Figure 1.

which an explicit analytic form of the error estimator naturally arising from MPDATA [18] can be
employed.

MPDATA relies on the iterative application of the upwind scheme, where subsequent iterations compen-
sate for the implicit viscosity of the preceding steps. In MPDATA the first- and second-order solutions
as well as the leading error are known explicitly. The analytic forms of the truncation errors for the
edge-based formulation of MPDATA canY be found in [12]. Having error forms and measures available
naturally dictates refinement indicators, akin to the Richardson extrapolation, that take advantage of the
property that a more accurate solution is obtained from every subsequent upwind iteration.

The subsequent solution update can therefore be written in brief as

Φ̃
p
i = Φ̃

p−1
i − δ t

ϑi
RHSp−1 ; p = 1, .., IORD . (7)

Here p numbers upwind iterations in MPDATA, initiated with values from the previous time step n,
Φ̃0 ≡ Φ̃n, and ϑi is a volume (area in 2D) of the ith dual cell. At the end of the upwind iterations
Φ̃IORD = Φ̃n+1. Thus, Φ̃1 is the first-order accurate upwind solution. While (δ t/ϑ)RHS0 represents
the integral (first-order accurate) of the divergence of the convective flux, (δ t/ϑ)RHS1 is a first-order
approximation to the leading truncation error of the solution integral.

There is no unique way to devise a practical error indicator. For example, setting Φ̃≡ θ gives the basic
refinement indicator defined for all edges associated with ith node as

ηi j =
|RHSp

i −RHSp
j |

Max
i=1,N

|RHSp
i |

; j = 1, l(i) , (8)

where N denotes total number of nodes. In terms of residual errors, for p = 2 the residual error is
based on comparing the first- and second-accurate solutions, while for p = 3 it is constructed from
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the second- and (nearly) third-order solutions. In practice, however, the indicator (8) acts similarly for
either two or three upwind passes in MPDATA [18], consistently with observation that the phase errors
of MPDATA solutions are insensitive to p. Therefore, the indicator obtained for p = 2 is typically used
in applications. Furthermore, in all examples presented here we use MPDATA infinite gauge option for
which p = 2 by design; cf. section 5.1 in [12].

3 Results

3.1 Stratified Boussinesq Flow Past a Steep Isolated Hill

The canonical stratified flow past an axially-symmetric cosine hill [3, 2, 10] is adopted to evaluate
the performance of the non-hydrostatic NFT MPDATA finite volume edge-based scheme. In [15], the
simulation of this problem was computed on dual meshes derived from structured and prismatic primary
meshes. Here, the validation of the scheme extends previous studies to include tetrahedral primary
meshes.

Figure 3: A xz cross-section through the central, y = 0, plane near the hill. Nearby mesh points are
projected on the cross-section for visualisation. The primary mesh is fully unstructured and consists
of tetrahedral elements only. The computation is conducted on the dual mesh built from the primary
mesh.

A hill with height h(x,y) = h0 cos2(πr/2L) if r = (x2 + y2)1/2 ≤ L and h = 0 otherwise is placed at the
bottom of computational domain at its centre. The domain size is 5L×4L×2L in x, y and z directions,
respectively, where L = 3000 m and h0 = 1500 m. A fully unstructured primary mesh consisting of
tetrahedral elements was generated in the domain using an uniform background point spacing of δx =
δy = δ z = 120 m. Figure 3 shows a representative fragment of the tetrahedral mesh in cross-section
plane y=0 near the hill. Nearby mesh points are projected on the cross-section for ease of illustration.
The total number of points in the mesh is 1945090. The computational dual mesh consists of polyhedra
built by connecting barycenters of the tetrahedral elements, centres of the elements’ faces and middle
points of edges.

The constant environmental wind is specified at U = 5 ms−1, and a constant buoyancy frequency is
N = 10−2s−1. The potential temperature of the reference state is θo = 300K. With the specified hill
geometry, the ambient conditions result in a low Froude number, Fr =U/Nh0 = 1/3, flow. The problem
is essentially non-hydrostatic and can be compared to experimental results given in [3], with h0/L ∼
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O(1) and Rossby number Ro = U/L fz↗ ∞.

Figure 4: Contours of vertical velocity in central xz cross section (y = 0). The contour interval is
0.5 ms−1, and Fr = 1/3. The result is obtained after two advective time scales T = L/U. Positive
and negative contours are presented with solid and dashed lines, respectively; the zero contours are
not displayed. The velocity vectors are interpolated from the unstructured mesh to a Cartesian mesh.

Figure 5: As in Figure 4, but for the contours of vertical velocity at z = 500 m horizontal cross-section.

The results are obtained after two advective time scales T = L/U , at t = 1200s, when the main features
of the solution are already established. The initial condition is provided by the solution of the potential
flow problem, with a gradient of the potential perturbation imposed on the ambient wind. While the
boundary conditions are rigid in x, y and z, the gravity-wave absorbers near the upper and lateral stream-
wise boundaries attenuate the solution toward ambient profiles with absorbing coefficient increasing
linearly from zero at the distance L/2 from the boundary to 150−1 s1 at the boundary.

The flow patterns displayed in figures 4, 5 and 6 are computed with the incompressible Boussinesq
option of the scheme and show key features of a non-rotating low Froude number flow, including the
characteristic separation and reversal of the lower upwind stream, and the formation of intense vertically-
oriented vortices on the lee side of the hill [3, 10, 2], with the flow aloft transitioning to the linear gravity
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Figure 6: AS in Figure 5 but at the z = 2500 m horizontal cross-section.

wave response [9]. In Figure 4, in the central xz cross-section at y = 0, a turbulent wake is formed in
the lee-side of the hill and characteristic gravity waves response is visible above the wake. This result
matches closely the reference solution obtained on structured and prismatic meshes (upper panels in
Figures 6 and 8 in [15]). Figure 5, in xy cross-section at z = 500 m, presents a pair of eddies behind
the hill, showing the intrinsic three-dimensionality of the lee-side flow. The reason of this flow structure
is that the incoming flow up to zc ≈ (1−Fr)h0 is forced to deflect and split close to the hill as it lacks
sufficient kinetic energy to go over the hill. Figure 6 shows the gravity-wave responses aloft on the xy
cross-section z = 2500 m. The two horizontal flow patterns also compare well with the reference results
in [15]. The statistics of the results are presented in Table 1. The units of the three velocity components
and potential temperature are ms−1 and K. The statistics of Θ′ are converted to the vertical displacements
of isentropes using a crude approximation

ηz ≈−θ
′ g
N2θo

≈−333θ
′ m . (9)

The extrema of variable fluctuations about the ambient state are taken over the entire computational
domain. The irregularity of the mesh is taken into account when calculating the averages and standard
deviations of the fluctuations. With ϑi denoting the cell volume surrounding mesh point i, the average
values φ

′ are calculated according to

φ ′ =

n
∑

i=1
(φ ′i ϑi)

n
∑

i=1
ϑi

, (10)

and the corresponding standard deviations σφ ′ are calculated as

σφ ′ =

n
∑

i=1

(
(φ ′i −φ ′)2ϑi

)
n
∑

i=1
ϑi

. (11)
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The results summarized in the table are obtained on a fully unstructured mesh with the implicit Boussi-
nesq model. They are consistent with those in Table 2 of [15], obtained with anelastic equations inte-
grated on an unstructured prismatic mesh and a structured grid.

Variable Maximum Minimum Average Standard Deviation
u′ 3.51 -11.39 0.06 0.76
v′ 8.04 -8.48 4.7×10−6 0.47
w′ 5.35 -4.80 −1.02×10−4 10 0.36
Θ′ 2.85 -1.48 −4.7×10−3 0.204
η ′ -949 493 1.57 66.6

Table 1: Fluctuation’s statistics on a fully unstructured mesh

3.2 Orographically-forced atmospheric gravity waves

The benchmark problem of Schär et al [8] is considered next to demonstrate the implementation of static
mesh adaptivity within the unstructured mesh edge-based finite volume spatial discretisation framework.
The problem consists of an anelastic flow past a terrain profile under stably stratified atmospheric con-
ditions, as described in [21] while following [8, 4]. The terrain profile is given by

zs(x) = zs0 exp
(
−x2

a2

)
cos2

(
πx
λ

)
(12)

with zs0 = 0.25 km, a = 5 km and λ = 4 km. The buoyancy frequency N = 0.01s−1; the ambient wind
profile is U = 10 ms−1; the computational domain is 70×21 km and the simulation time is 5 hours. The
upper 11 km of the model domain is designated as an absorbing layer, to simulate an infinite atmosphere
and to suppress spurious wave reflection from the upper rigid-lid. Lateral absorbers extend for 10 km
away from the boundaries.

Figure 7: Coarse structured mesh and refined unstructured mesh

The solution of Lipps and Hemler anelastic system of governing equations [5, 6] is obtained using a
semi-implicit extension [14] of the basic NFT MPDATA model outlined in section 2.1. The flow and
geometry parameters in [8] are chosen to illustrate a bifurcation into a qualitatively incorrect solution
for a specific arrangement of a sigma class of the terrain following transformation which is especially
pronounced for solutions obtained on coarse meshes. The initial solution obtained in this work uses
a purposely coarse 81× 46 structured mesh shown in the left panel of Figure 7, with the resulting
δx = 875 m and δ z ≈ 467 m, respectively, 1.75 and 1.5 times coarser than the increments used in the
earlier works. The mesh conforms to the geometry of terrain and is constructed to mimic the Gal-
Chen and Somerville terrain-following coordinates [21], but the solution is obtained in a physical space
without a need for a transformation. The resulting vertical velocity contours given in the left panel of
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Figure 8: Vertical velocity of the flow past the terrain profile after 5 h of simulation when the steady
state has been reached on coarser and finer meshes. The contour interval is 0.05 ms−1 and zero
contour is not shown.

Figure 8 show much weaker spurious features than those reported in [8]. However, the coarse mesh
solution carries sufficient information for the purpose of an adaptive error estimation.

The improved computational mesh is generated by a static mesh adaptivity utilising the initial solution
obtained from the coarse mesh which provides input into the error estimator (8). The normalised error
allows to specify a desired background spacing which in turn permits a generation of refined mesh. The
advancing front technique is employed here for generating a new primary triangular mesh for which the
corresponding dual mesh is shown in the right panel of Figure 7. As anticipated, the areas of finer mesh
are present where the topography changes more rapidly and in the manin wave train. In contrast, the
mesh coarsens in the areas of smooth flow and absorbing boundaries. Figure 8 shows the corresponding
vertical velocity contours obtained with the adapted mesh. The new solution is in agreement with the
reference solution [8], and other published results [21], however it is obtained on a mesh containing
8662 nodes, as oppose to 10,011 employed in [21].

Notably, although the initial solution in this study was obtained on a coarse structured mesh, the pro-
posed adaptivity procedure is flexible and can analogously be used with the initial solution obtained
from the coarse mesh built on a base of a triangular primary mesh.

4 Remarks

An outline of a study exploring the applicability and flexibility of the finite volume discretisation operat-
ing on fully unstructured and adaptive meshes with the efficient edge-based data structure is presented.
The numerical results illustrate the performance and potential of such meshes for simulating flows past
complex terrain.

The successful validation of a limited area non-hydrostatic NFT MPDATA atmospheric model is further
extended to meshes constructed from the irregular tetrahedral primary grids. The presented results
confirm that the approach performs well for arbitrary shaped meshes. Furthermore, the results match
the accuracy attainable on Cartesian grids with a similar spatial resolution.

An illustration of the static adaptivity provides an example of the potential for an automated generation
of meshes with nodes distribution optimised for the problem at hand.
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