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CEREA, École des Ponts ParisTech and EDF R&D
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A few key theoretical elements

Context: Atmospheric constituent versus meteorology

◮Numerical weather forecast:
◮The global models are weakly non-linear but chaotic.
◮They do not depend on many parameter forcing fields (radiation, friction).
◮Quite accurate at global scale.
◮An inverse modelling problem on the initial condition (short windows).

◮ [Offline] chemical and transport forecast:
◮They are potentially strongly nonlinear but non-chaotic.
◮They depend on several parameter forcing fields (emissions, boundary conditions)

and many uncertain parameters (kinetic rates, species microphysical parameters,
transport subgrid parametrisation, etc.).

◮Quite uncertain.
◮An inverse modelling problem on the initial condition and many forcing fields.
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A few key theoretical elements

Context: Atmospheric constituent versus meteorology

◮Atmospheric constituent data assimilation is more of an inverse modelling game
because:

◮we may be interested in the forcing/parameters themselves,
◮ and successful forecasts rely on an accurate estimation of the forcings.

◮Most of the current data assimilation schemes can be applied to either subjects (OI,
3D-Var, EnKF, 4D-Var). However, my vote goes to the smoothers (4D-Var, ensemble
Kalman smoothers with weakly nonlinear physics/chemistry, iterative ensemble Kalman
smoothers, 4D-En-Var, etc.)

◮The background statistics are more uncertain and difficult to build in atmospheric
constituent data assimilation.

M. Bocquet ECMWF workshop, 22-24 October 2013, Reading, UK 4 / 29



A few key theoretical elements

Successful data assimilation: It’s all about controlling the errors

◮Problems in atmospheric constituent data assimilation:

◮Our observations are noisy

◮Our models are wrong (biased at the very least)

◮Even when they are fine, observations and models do not tell the same story!
i.e. representativeness errors are especially strong in this field.

◮So successful data assimilation and especially inverse modelling is all about errors!

◮Need to account for / estimate those errors in order to properly estimate control
parameters.
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A few key theoretical elements

Mathematical tools to correct/estimate the errors

◮ Statistical methods for hyperparameter estimation (parameters of R and B):

◮Maximum likelihood [Dee, 1995], [Desroziers and Ivanov, 2001],

◮ χ2 [Tarantola, 1987], [Ménard et al., 2000] ,

◮L-curve [Hansen, 1992], [Bocquet and Davoine, 2007],

◮ statistical diagnostics: [Desroziers et al., 2005], [Schwinger and Elbern, 2010],

◮ (generalised) cross-validation [Whaba, 1990],

◮ online variational estimation [Doicu et al, 2010]

For CO2 fluxes estimation, discussed in: [Michalak et al., 2005], [Wu et al, 2013]

◮Estimating the parameters of model error parametrisations: a powerful paradigm
when affordable [Bocquet, 2012], [Koohkan and Bocquet, 2012]

◮Context: A deterministic model full of uncertain parameters

◮ Jointly estimate the state variables as well as the uncertain parameters.

◮Overfit is possible. Still might lead to a powerful forecasting tool.
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First example: Fukushima-Daiichi
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First example: Fukushima-Daiichi

The Fukushima Daiichi accident

◮ Chronology: March 12: R 1 venting + explosion; March 13-14: R 3 venting +
explosion; March 15: R 2 venting + explosion; March 20-22: R 2 R 3 spraying - smokes.

−→ Source term of major interest for risk/health agencies, NPP operators
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First example: Fukushima-Daiichi

Observations of the Fukushima atmospheric dispersion

◮Available data:
◮Very few observations of activity concentrations in the air: A few hundreds of

observations over Japan publicly released.
◮Several thousands of observations from the (far away) CTBO IMS network.
◮Activity deposition: a few hundreds, but more difficult to exploit (mainly 137Cs).
◮Hundreds of thousands of gamma dose measurements available.

M. Bocquet ECMWF workshop, 22-24 October 2013, Reading, UK 9 / 29



First example: Fukushima-Daiichi

Reconstruction of the Fukushima Daiichi source term

◮Using three (d = 3) heterogeneous datasets:
◮Activity concentrations in the air,
◮Daily measurements of fallout,
◮Total cumulated deposits: densely distributed in space but no information in time.

◮Yet, too few observations so that the inversion highly depends on the background.

◮Retrieval of the cesium-137 source term σ = (σ1,σ2, . . . ,σ504) (∆t = 1h) using

J =
1

2
(µ −Hσ )TR−1 (µ −Hσ )+

1

2
σTB−1σ , σ ≥ 0 (1)

where Ri = r2
i
Idi is the submatrix of R related to data set i , B=m2IN .

H: Jacobian matrix of the atmospheric transport model.

◮Nd +1 hyper-parameters to estimate simultaneously.

◮Estimation method: maximisation of the non-Gaussian likelihood.
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First example: Fukushima-Daiichi

Non-Gaussian maximum likelihood principle

◮Non-Gaussian maximum likelihood:

p(µ|r1, . . . , rNd
,m) =

e−
1
2 µT(HBHT+R)

−1µ
√

(2π)d |HBHT +R|
×

∫

σ≥0

e−
1
2 (σ−σ BLUE)

T
P−1

BLUE(σ−σBLUE)

√
(π/2)N |PBLUE|

dσ , (2)

with:

σBLUE =BHT
(
HBHT +R

)−1
µ , (3)

PBLUE =B−BHT
(
HBHT +R

)−1
HB . (4)

◮ Integral solved by Geweke-Hajivassiliou-Keane simulator (fine with several thousand
variables).
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First example: Fukushima-Daiichi

Inversion results (caesium-137)
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First example: Fukushima-Daiichi

Deposition map reanalysis
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Deposition measurements map (June 2011) - Reanalysis using three datasets
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Second example: estimation of representativeness errors
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Second example: estimation of representativeness errors

Inverse modelling of carbon monoxide fluxes at regional scale
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◮Using the French 600-stations
BDQA network: hourly measure-
ments of CO concentrations at
about 80 stations.

◮Observations highly impacted
by representativeness errors (traf-
fic, urban stations).

◮Great number of observations (about 105 assimilated here, 5×105 used for
validation).

◮Control space: fluxes and volume sources parameterised with about 70×10
3
variables

at 0.25◦×0.25◦ resolution.

−→ Even in this linear physics context, 4D-Var is a method of choice.
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Second example: estimation of representativeness errors

4D-Var

◮Gradient obtained from adjoint approximated by the discretisation of the continuous
adjoint model [Davoine & Bocquet, 2007; Bocquet, 2012].

◮Background: EMEP inventory over Europe with an uncertainty of about 100%.

◮Cost function:

J (α) =
1

2

Nα−1

∑
h=0

(αh−1)TB−1
αh

(αh−1)

+
1

2

N

∑
k=0

(yk −Hkck)
TR−1

k
(yk −Hkck)

+
N

∑
k=1

φ T
k
(ck −Mkck−1−∆tek ) (5)

◮α: control vector of scaling parameters that multiply the first guess.

◮Observation (representativeness) errors iteratively re-scaled by χ2
diagnosis.
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Second example: estimation of representativeness errors

Results of (traditional) 4D-Var

C O RMSE C.Pear. FA2 FA5

Simulation (01/01–02/26 2005) 303 662 701 0.16 0.52 0.90
Forecast (02/26–03/26 2005) 267 642 648 0.13 0.47 0.88

Optimisation of α 396 662 633 0.36 0.59 0.92
Forecast with optimal α 343 642 589 0.33 0.53 0.90
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◮Tremendous impact of representativeness errors!
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Second example: estimation of representativeness errors

Coupling 4D-Var with a simple statistical subgrid model

A

B

◮We would like to take into account the impact of nearby sources that generate peaks
on the CO concentration recordings:

ε rep ≃ ξ ·Πe −→ y=Hc+ξ ·Πe+ ε̂ . (6)

ξ : set of statistical coefficients (influence factors).
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Second example: estimation of representativeness errors

Coupling 4D-Var with a simple statistical subgrid model

◮Cost function of 4D-Var-ξ :

J (α ,ξ ) =
1

2

Nα−1

∑
h=0

(αh−1)TB−1
αh

(αh−1)

+
1

2

N

∑
k=0

(yk −Hkck −ξ ·Πek )
T
R̂−1
k

(yk −Hkck −ξ ·Πek)

+
N

∑
k=1

φT
k
(ck −Mkck−1−∆tek) . (7)

◮ R̂ is residual error covariance matrix (smaller than R).

R= E
[
εεT

]
= ξ ·ΠE

[
eeT

]
ΠT ·ξ T + R̂ . (8)
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Second example: estimation of representativeness errors

Results of 4D-Var-ξ : Profiles (1/4)
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ξi = 0.6 h.

0 50 100 150 200 250 300
Time (hour)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
o
n
ce

n
tr

a
ti

o
n
 (

�

g/
m

3
) (b) Paris Boulevard p�riph�rique Auteuil

ξi = 2.7 h.

M. Bocquet ECMWF workshop, 22-24 October 2013, Reading, UK 20 / 29



Second example: estimation of representativeness errors

Results of 4D-Var-ξ : Profiles (2/4)
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ξi = 11.9 h.
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ξi = 45.8 h.
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Second example: estimation of representativeness errors

Results of 4D-Var-ξ : Scores (3/4)

◮ Skills:

C O RMSE C.Pear. FA2 FA5

Simulation (01/01–02/26 2005) 303 662 701 0.16 0.52 0.90
Forecast (02/26–03/26 2005) 267 642 648 0.13 0.47 0.88

Optimisation of α 396 662 633 0.36 0.59 0.92
Forecast with optimal α 343 642 589 0.33 0.53 0.90

Optimisation of ξ 615 662 503 0.57 0.73 0.96
Forecast with optimal ξ 574 642 451 0.56 0.76 0.97

Coupled optimisation of ξ , α 671 662 418 0.73 0.79 0.97
Forecast with optimal ξ , α 631 642 340 0.68 0.81 0.98

◮We found an increase of 9% in the French CO total emission. Consistent with
satellite retrieval for Western Europe.
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Second example: estimation of representativeness errors

Results of 4D-Var-ξ : Forecast (4/4)

◮Validation of a 10-month forecast after the 8-week assimilation window (2005)
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◮ Skills almost as good in the forecast period as in the assimilation time window!

◮ Seasonal effects impacting scores.
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Future plans

Future plans

◮Development of an EnVar method, the iterative ensemble Kalman smoother (IEnKS,
[Bocquet and Sakov, 2013]) that

◮+ performs a variational analysis over a time data assimilation window
◮+ has flow-dependent error estimation
◮+ does not use an explicit tangent linear/adjoint
◮ - - requires localisation (no free lunch)
◮+/- weak-constraint formalism under development

◮ Solves the Bayesian problem with minimal Gaussian assumptions (has the potential to
outperform 4D-Var and EnKF in all regimes)

◮Potentially well suited for joint state and parameter estimation, with nonlinear
dependencies.
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Future plans

Future plans

◮The augmented state formalism is convenient for the IEnKS, and offers an easy
implementation of technically challenging data assimilation problems.
◮ Lorenz ’95 with joint estimation of the forcing parameter F (41 variables): RMSEs.

Method / F profile Sinusoidal Step-wise

EnKF 0.063 0.079
EnKS L=50 0.040 0.063
4D-Var L=50 0.030 0.045

MDA IEnKS L=50 0.020 0.031
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Future plans

Future plans

◮Development of low-order models that couple a Lorenz model and a chemical model.
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Lorenz ’95 coupled to a tracer model.

◮The goals of this study will be:
◮ to probe the added value of online/coupled models DA vs offline models DA,
◮ to probe the added value of joint state and parameter estimation, integrated data

assimilation,
◮ to assess the nonlinearity and the numerical cost of these games.
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