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We have developed a data assimilation system for the analysis of tropospheric chemical composition 

and emissions based on an ensemble Kalman filter (EnKF) approach. This system simultaneously 

optimizes multiple model parameters including the surface emissions of NOx and CO and the 

lightning sources of NOx together with the concentrations of various chemical species from 

assimilation of multiple satellite observations (OMI, TES, MOPITT, and MLS). At the workshop, I 

presented the following key results from the data assimilation: 

 

1. With the multiple satellite datasets, an improved description of the chemical feedbacks can 

be obtained from the EnKF data assimilation, especially related to the NOx-CO-OH-O3 set of 

chemical reactions.  In the simultaneous data assimilation system, improved atmospheric 

concentrations of chemically-related species have the potential to improve the emission 

inversion, while the improved emissions estimates will benefit the atmospheric 

concentration analysis through a reduction in the model forecast error.  For instance, the 

emission optimization dominated the changes in the O3 profiles in the PBL in the tropics and 

at northern mid-latitudes, whereas the direct concentration adjustment was much more 

important in the free troposphere. This reveals the importance of the simultaneous 

adjustment of the emissions and concentrations for the tropospheric ozone budget and 

profile analyses (Miyazaki et al., 2012b). 

 

2. The EnKF approach with the state augmentation method approach allows us to accumulate 

observational information with time and to reflect the non-direct relationship between the 

emissions and tropospheric columns because of the use of the background error covariance 

dynamically estimated from the ensemble of CTM forecasts. The assimilation of 

measurements for species other than NO2 provides additional constraints on the surface 

NOx emissions by adjusting the concentrations of the species affecting the NOx chemistry. 

The large influences highlight that uncertainties in the model chemistry impact the quality of 

the emission estimates. The multiple species assimilation improves the chemical consistency 

including the relation between concentrations and the estimated emissions (Miyazaki et al., 

2012a; Miyazaki and Eskes, 2013). 

 

3. The multiple species data assimilation provides comprehensive constraints on the global 

lightning NOx sources.  This approach has the potential to reduce the influence of model 

errors on the LNOx source estimation by simultaneously optimizing various aspects of the 

chemical system, including the surface emissions of NOx and CO as well as the 

concentrations of 35 chemical species. Errors in these model fields other than the LNOx 

sources introduce additional model–observation mismatches into the inversion and de- 

grade the LNOx source estimation. The assimilation provides substantial adjustments to the 

NOx sources both at the surface and in the middle–upper troposphere, because of the use of 

multiple satellite data sets with different vertical sensitivities.  The analysed LNOx sources 



have important implications for improving LNOx parameterisations. For instance, the widely 

used C-shape assumption underestimates the source strength in the upper troposphere and 

overestimates the peak source height over land and the tropical oceans, especially along the 

ITCZ (Miyazaki et al., 2013). 
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Tropospheric chemistry data assimilation

✓ The use of data assimilation for atmospheric chemistry, 
especially for short-lived chemical species, is still challenging 
(e.g., MACC). 

✓ A large part of the chemical system is not sensitive to initial 
conditions, but is sensitive to the model parameters (e.g., 
reaction rates, emissions). 

✓→ Simultaneous adjustment of model parameters and 
concentrations is a powerful framework.

✓ The advantage of Ensemble Kalman filter (EnKF) is its easy 
implementation for complicated systems and parameter 
estimations. 
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革を遂げたのである。そして、その科学発信力は、世界のトップクラスの研究

機関と肩を並べるまでになった。したがって、1996−2010 年（第 3 期）は、「科

学研究発展期－科学と技術を融合させた研究体制の確立－」ということができ

る。 

 この時期、世界は大きく変わっていった。その象徴的事件は 2001 年 9 月 11

日の同時多発テロである。世界は激動の時代へと突入。人々の価値観、時代観、

社会観など、我々の考え方の基軸となる

思想や体系が流動化した。また、新興国

の台頭によって、世界の経済、物流、人

口構造などの社会経済構造が大きく変化

した。科学技術もまた、変化の激しい社

会への対応や、危機管理への貢献（たと

えば BSE 対応、パンデミック対策など）

などの即効性のある目標への変換が要請

されるようになってきた。 

 

今そして次の 15-20 年 

2011 年 3 月 11 日、M（マグニチュード）

9.0 の巨大地震・津波が日本を襲った。こ

の未曾有の出来事は、日本の将来に対して

極めて重い課題を突きつけた。これまでの

想定を大きく上回る地震と津波の発生は、

改めて自然災害の脅威と科学技術の限界を

痛感させた。あわせて、福島第一原子力発

電所事故に伴う放射性物質の放出・拡散に

よる海洋生物への影響などは、我が国のみ

ならず世界的にも懸念されている。このような事態に、JAMSTEC は有する能力

を可能な限り活用し、緊急調査の実施や海域モニタリングへの協力を行ってき

たが、同時に科学技術が果たすべき役割や限界を真摯に考える転機ともなった。 

このような我が国の立場を考慮すれば、JAMSTEC の果たすべき役割、すなわ

ちそのミッションは明確である。JAMSTEC は「新たな科学技術で海洋立国日本

を支え、国民、人類の向上に貢献する」。このためには、私たちはこれまでの３

つの時代の成果を経て、世界の誰も行ったことのない場所、誰も考えつかなか

ったような未踏の領域を切り開くことにより、世界トップの研究機関になるべ

きである。それがミッション達成の近道であると確信する。私たちは、次の 15

年、新たな地平を目指して、今、旅立たなければならない。 

Global CTM “CHASER”
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Assimilation scheme

Forecast model

A priori emissions

State vector

Obs operator

Super Obs

Cycle

Techniques

Assimilated data

Validation data

Localized EnKF (LETKF, Hunt et. al., 2007), 48 members

CHASER (Sudo et al., 2002), 47 species & 88 reactions, T42L32

EDGAR4.2 + GFED3.1 + GEIA

NOx & CO emissions, lightning NOx, 35 chemical species

Averaging kernel and a priori information

applied for OMI NO2 and MOPPIT CO data

100 min.

Spatial & variable covariance localization, covariance inflation

OMI NO2 (DOMINO2), TES O3 (ver. 4), MOPITT CO (ver. 5), 
MLS O3 & HNO3 (ver. 3.3)

SCIAMACHY NO2, GOME-2 NO2, TES CO, 
Ozonesonde, Aircraft (INTEX-B, HIPPO) etc

CHASER-DAS (Miyazaki et al., 2012a, 2012b, 2013a, 2013b)



Interactions schematicInteractions schematic
ATMOSPHERIC PHYSICS & CHEMISTRY

MLS O3

TES O3

MOPPIT CO OMI NO2

MLS HNO3

(based on MIT lecture note)

OMI NO2

(Surface)

(Troposphere)

(Stratosphere)

MOPITT CO

TES O3

MLS O3

MLS HNO3

Lightning

LNOx
O3
HNO3

SNOx SCO
(Boundary layer)



O
x

N
2O
5

C
H
3O
O
H

PA
N

M
G
LY

C
H
3C
O
C
H
3

C
3H
6

C
2H
6

N
O
x-
sf
lu
x

SO
2

M
A
C
R
O
O
H

H
O
R
O
O
H

C
3H
7O
O
H

M
A
C
R

C
H
3C
H
O

C
5H
8

C
O

SO
4

H
N
O
4

N
O
x

H
N
O
3

C
2H
5O
O
H

IS
O
N

H
A
C
ET

C
H
2O

O
N
M
V

C
2H
4

C
O
-s
flu
x

D
M
S

O
XS

C
H
3C
O
O
O
H

IS
O
O
H

M
PA
N

N
A
LD

C
10
H
16

C
3H
8

LN
O
x

H
2O
2Ox

N2O5

CH3OOH

PAN

MGLY

CH3COCH3

C3H6

C2H6

NOx-sflux

SO2

MACROOH

HOROOH

C3H7OOH

MACR

CH3CHO

C5H8

CO

SO4

HNO4

NOx

HNO3

C2H5OOH

ISON

HACET

CH2O

ONMV

C2H4

CO-sflux

DMS

OXS

CH3COOOH

ISOOH

MPAN

NALD

C10H16

C3H8

LNOx

H2O2

O
x

N
2O
5

C
H
3O
O
H

PA
N

M
G
LY

C
H
3C
O
C
H
3

C
3H
6

C
2H
6

N
O
x-
sf
lu
x

SO
2

M
A
C
R
O
O
H

H
O
R
O
O
H

C
3H
7O
O
H

M
A
C
R

C
H
3C
H
O

C
5H
8

C
O

SO
4

H
N
O
4

N
O
x

H
N
O
3

C
2H
5O
O
H

IS
O
N

H
A
C
ET

C
H
2O

O
N
M
V

C
2H
4

C
O
-s
flu
x

D
M
S

O
XS

C
H
3C
O
O
O
H

IS
O
O
H

M
PA
N

N
A
LD

C
10
H
16

C
3H
8

LN
O
x

H
2O
2Ox

N2O5

CH3OOH

PAN

MGLY

CH3COCH3

C3H6

C2H6

NOx-sflux

SO2

MACROOH

HOROOH

C3H7OOH

MACR

CH3CHO

C5H8

CO

SO4

HNO4

NOx

HNO3

C2H5OOH

ISON

HACET

CH2O

ONMV

C2H4

CO-sflux

DMS

OXS

CH3COOOH

ISOOH

MPAN

NALD

C10H16

C3H8

LNOx

H2O2

Surface 500 hPa

• Emission estimation based on state augmentation.
• Covariance among very weakly-related species is 
neglected (i.e., variable localization (Kang et al., 2011)).

Background error covariance structure in EnKF

Emissions
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forming most calculations in parallel (Miyoshi and Yamane,
2007).

The LETKF transforms a background ensemble (xb
i ;i=

1,...,k) into an analysis ensemble (xa
i ;i= 1,...,k) and up-

dates the analysis mean, where x represents the model vari-
able; b the background state; a the analysis state; and k the
ensemble size. In the forecast step, a background ensemble,
xb
i , is globally obtained from the evolution of each ensemble

model simulation. The background ensemble mean, xb, and
its perturbations (spread), Xb, are thus estimated from the
ensemble forecast,

xb =
1

k

kX

i=1

xb
i ; Xb

i =xb
i �xb. (3)

These are N⇥k matrices, where N indicates the system di-
mension and k indicates the ensemble size.

In the analysis step, an ensemble of background observa-
tion vectors in the observation space, yb

i =H
�
xb
i

�
, is esti-

mated using the non-linear observational operator H . An
ensemble of background perturbations Yb = yb

i �yb is also
computed. The ensemble mean is then updated by

xa =xb+XbP̃a
�
Yb

�T
R�1

⇣
yo�yb

⌘
, (4)

where yo is the observation vector, R is the p⇥p observation
error covariance, P̃a is the local analysis error covariance in
the ensemble space. The new analysis ensemble perturbation
matrix in the model space Xa is simultaneously obtained by
transforming the background ensemble Xb. Further details
are described in Hunt et al. (2007) and Miyazaki et al. (2012).

EnKF approaches always have a spurious long dis-
tance correlation problem because of imperfect sampling
of the probability distribution due to limited ensembles
(Houtekamer and Mitchell, 2001). In complex chemical data
assimilation systems, a realistic estimation of the background
error distribution is very important (Singh et al., 2011; Mas-
sart et al., 2012). Boynard et al. (2011) demonstrated that
the spatial correlations estimated from ensemble simulations
are overestimated in the chemical model error covariance
fields, and suggested the need for special attention to avoid
too large correlation of fields distant from the location of the
observation. A covariance localization technique is used to
avoid possible degradation because of under sampling. We
assumed that observations located far from the analysis point
have larger errors and that those observations have less ef-
fect on the analysis (Miyoshi and Yamane, 2007). A correct
choice of ensemble size and correlation lengths is important
to improve the data assimilation performance, as will be dis-
cussed in Section 3.3.4

3.3 Experimental Setting

Three series of one-month data assimilation experiments
have been conducted, starting from the March 1, 2006, Jan-
uary 1, 2007, and July 1, 2007. The data assimilation cy-
cle is 100 min; e.g., each orbit cycle of polar-orbit satellites.

This setting is useful to reduce the time discrepancy (sam-
pling errors) between the observations and the model in the
data assimilation, given distinct diurnal variation in tropo-
spheric chemistry (Miyazaki et al., 2012). Figure 1 shows a
schematic diagram of the data assimilation process.

3.3.1 State vector

The state vector is chosen to include uncertain model aspects
that most effectively optimize the tropospheric chemical sys-
tem. First, emissions are a major source of uncertainty in
CTM simulations. The solution of a tropospheric chemical
model is only weakly influenced by the initial conditions,
because of the strong stiffness of tropospheric chemical pro-
cesses (Constantinescu et al., 2007; Lahoz et al., 2007). An
improvement could be achieved by an ensemble obtained by
perturbing various parameters of the model (emissions, re-
action rates, etc.). The EnKF can be extended to include
such parameters in the data assimilation process. A state vec-
tor which includes both the concentrations and the emissions
makes it possible to find the optimal values for the emissions,
which are linked to the concentrations by the CTM. In the
EnKF system, the background error covariance, estimated
from the ensemble CTM simulations, varies with time and
space, reflecting dominant atmospheric processes. The local
analysis increment for emissions thus reflects the complex
indirect relationship between concentrations and emissions
of related species.

The surface emissions of NO
x

, e(NO
x

), the surface
emissions of CO, e(CO), the lightning sources of NO

x

,
e(LNO

x

), and the concentrations of all the predicted (total
35) chemical species, c, are optimized at all the models grid
cells for each data assimilation cycle. The background en-
semble can be represented as follows,

xb
i =

2

664

cbi
e(NO

x

)bi
e(CO)bi

e(LNO
x

)bi

3

775. (5)

Although the data assimilation system simultaneously up-
dates emissions of NO

x

and CO, we treat the data indepen-
dently and do not include NO

x

-CO emissions covariance in
the background error matrix. This is to avoid the effects of
spurious multi-variate correlations in the background error
covariance, possibly developed because of limited ensem-
bles, and errors in both model and observations. However,
the forecasted atmospheric concentration of NO

2

and CO are
coupled chemically through their effect on the tropospheric
chemistry.

Based on sensitivity experiment results (see Section 4),
we have also applied the variable localization to improve
the analysis. This means the covariance among non- or
weakly-related variables is set to zero. This technique
allows us to neglect the correlations among variables
that may suffer significantly from spurious correlations.

Concentration



The relative impact (in %) of the NOx emission inversion (left) and the direct 
concentration adjustment (right) through assimilation on the vertical O3 profile

The simultaneous adjustment of the emissions and the concentrations 
is a powerful approach to optimize the whole tropospheric profiles
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(Miyazaki et al., 2012b)
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Spatial correlation increment     BIAS reduction rate    RMSE reduction rate

Assimilated data    Independent data (Miyazaki et al., 2012b)
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Observing System Experiments (OSEs)

(Miyazaki et al., 2012b)

an effective way to improve the representation of tropospheric 
chemistry, by influencing O3 precursor’s emissions and 

chemical processes controlling O3 concentration variations. 
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  An important test for the quality of data assimilation is whether the differences between the 
innovations are consistent with the covariance matrices for the model forecast and observations. 
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east Asia, biomass burning dominates the seasonal variations
of NO

2

concentrations, where the maximum and minimum
concentration occurs almost in the same months in the model
and retrievals, but with a mean negative bias of about 20-40
% in the model.

3.3 Diurnal variation

To improve the simulation, we applied pre-defined functions
for the diurnal variations of the surface NO

x

emissions. As
described in Section 2.2, we applied different diurnal vari-
ation profiles for different sources: maxima in the morning
and evening for anthropogenic sources; a rapid increase in
the morning and maximal emissions at mid-day for biomass
burning sources; and maximal emissions in the afternoon
for soil sources. By applying the diurnal variability scheme,
CHASER generally shows better agreements with the satel-
lite retrievals, with a global mean RMSE reduction of about
10-15 (30-40) % compared to the OMI (SCIAMACHY) re-
trievals. Similar results were demonstrated with other CTMs
(van Noije et al., 2006; Boersma et al., 2008b). The diurnal
variability scheme generally decreases the NO

2

concentra-
tion in the morning, but increases it in the afternoon in the
industry and biomass burning areas (Fig. 4). It improves the
agreement with DOMINO v2 data over Europe (Fig. 4a),
whereas the increased biomass burning emission during day-
time caused the NO

2

columns over Central Africa to be too
high compared to DOMINO v2 data (Fig. 4b). The diurnal
variability for the biomass burning source is highly variable
and uncertain. Since the diurnal variation of NO

x

emissions
strongly influences the model-observation difference, the im-
plementation of a realistic diurnal scheme is important to ob-
tain reasonable emissions (e.g., Jaeglé et al., 2005). The im-
pact of the diurnal scheme on surface emission estimations
will be further discussed in Section 6.

4 Optimizing the data assimilation system

4.1 Impact of super-observation

By using the super-observations instead of the normal ob-
servations, the data assimilation reveals a better agreement
with the assimilated DOMINO v2 data. An increasing spa-
tial correlation of 0.03-0.05 and a decreasing global mean
RMSE of 30-40 % were observed in an experiment with the
super-observations compared to normal observations. Im-
provements by the super-observation approach were com-
monly observed at both a resolution of the super-observations
(i.e., 2.5�) and at finer scale (i.e., 1�). In the case with the
normal observations, observation data contains large repre-
sentativeness error and are noisy especially in polluted areas,
which may prevent the analysis from efficiently and stably
reducing the systematic errors of the model (i.e., analysis in-
crements were sometime very noisy and large). The super-
observation approach generally provides more representative

data with a recued random error (e.g., than the individual
observation) and results in systematic and smaller analysis
increments. Furthermore, the super-observation approach re-
duces the computational cost of the data assimilation, by re-
ducing the number of data processed in the analysis step.

4.2 Sensitivity to assimilation parameters

Various factors affect the performance and the computational
cost of the data assimilation. We have conducted sensitivity
experiments to obtain an optimal setting for the data assim-
ilation, as summarized in Table 2. First, the analysis is sen-
sitive to the localization length. The lifetime of NO

x

in the
lower troposphere varies from several hours to a day, with a
longer lifetime during winter than during summer. In addi-
tion, long-range transport of, for instance, peroxyacetyl ni-
trate (PAN) can propagate local NO

x

source information to
remote places. As a result, the NO

x

emission and NO
2

con-
centration will have long distance correlations in some cases.
Remote observation will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the lo-
cation and season because of changes in the NO

2

lifetime
and wind patters. Second, a large ensemble size is essen-
tial to capture background error covariance structures prop-
erly, but also increases the computational cost. The analysis
improved by increasing the ensemble size to 32, whereas it
did not vary significantly by increasing it further. Thus, en-
semble size of (or greater than) 32 was preferred to remove
sampling errors. Finally, the use of the covariance inflation
(c.f., Eq. (4)) slightly improved the analysis together with the
conditional covariance inflation (c.f., Section 2.3.2), since it
reduces the underestimation in the background error covari-
ance. Although there is no clear optimal value, we employ 5
% covariance inflation.

The performance of the tropospheric NO
2

column data as-
similation with the optimized settings was evaluated from the
�2 test (e.g., Ménard and Chang, 2000; Zupanski and Zu-
panski, 2006). The �2 is estimated from the ratio of the ac-
tual OmF to the estimated background covariance. For this
test, the innovation statistics are diagnosed from the OmF�
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�
xb

��
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�
HPbHT +R
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Using this statistics, the �2 is defined as follow:

�2 =traceYYT , (15)

where H is the non-linear observational operator and the H
is the linearization of the observation operator. The mean
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east Asia, biomass burning dominates the seasonal variations
of NO

2

concentrations, where the maximum and minimum
concentration occurs almost in the same months in the model
and retrievals, but with a mean negative bias of about 20-40
% in the model.

3.3 Diurnal variation
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for the diurnal variations of the surface NO

x

emissions. As
described in Section 2.2, we applied different diurnal vari-
ation profiles for different sources: maxima in the morning
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the morning and maximal emissions at mid-day for biomass
burning sources; and maximal emissions in the afternoon
for soil sources. By applying the diurnal variability scheme,
CHASER generally shows better agreements with the satel-
lite retrievals, with a global mean RMSE reduction of about
10-15 (30-40) % compared to the OMI (SCIAMACHY) re-
trievals. Similar results were demonstrated with other CTMs
(van Noije et al., 2006; Boersma et al., 2008b). The diurnal
variability scheme generally decreases the NO

2

concentra-
tion in the morning, but increases it in the afternoon in the
industry and biomass burning areas (Fig. 4). It improves the
agreement with DOMINO v2 data over Europe (Fig. 4a),
whereas the increased biomass burning emission during day-
time caused the NO

2

columns over Central Africa to be too
high compared to DOMINO v2 data (Fig. 4b). The diurnal
variability for the biomass burning source is highly variable
and uncertain. Since the diurnal variation of NO

x

emissions
strongly influences the model-observation difference, the im-
plementation of a realistic diurnal scheme is important to ob-
tain reasonable emissions (e.g., Jaeglé et al., 2005). The im-
pact of the diurnal scheme on surface emission estimations
will be further discussed in Section 6.

4 Optimizing the data assimilation system

4.1 Impact of super-observation

By using the super-observations instead of the normal ob-
servations, the data assimilation reveals a better agreement
with the assimilated DOMINO v2 data. An increasing spa-
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observation approach generally provides more representative

data with a recued random error (e.g., than the individual
observation) and results in systematic and smaller analysis
increments. Furthermore, the super-observation approach re-
duces the computational cost of the data assimilation, by re-
ducing the number of data processed in the analysis step.

4.2 Sensitivity to assimilation parameters

Various factors affect the performance and the computational
cost of the data assimilation. We have conducted sensitivity
experiments to obtain an optimal setting for the data assim-
ilation, as summarized in Table 2. First, the analysis is sen-
sitive to the localization length. The lifetime of NO

x

in the
lower troposphere varies from several hours to a day, with a
longer lifetime during winter than during summer. In addi-
tion, long-range transport of, for instance, peroxyacetyl ni-
trate (PAN) can propagate local NO

x

source information to
remote places. As a result, the NO

x

emission and NO
2

con-
centration will have long distance correlations in some cases.
Remote observation will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the lo-
cation and season because of changes in the NO

2

lifetime
and wind patters. Second, a large ensemble size is essen-
tial to capture background error covariance structures prop-
erly, but also increases the computational cost. The analysis
improved by increasing the ensemble size to 32, whereas it
did not vary significantly by increasing it further. Thus, en-
semble size of (or greater than) 32 was preferred to remove
sampling errors. Finally, the use of the covariance inflation
(c.f., Eq. (4)) slightly improved the analysis together with the
conditional covariance inflation (c.f., Section 2.3.2), since it
reduces the underestimation in the background error covari-
ance. Although there is no clear optimal value, we employ 5
% covariance inflation.

The performance of the tropospheric NO
2

column data as-
similation with the optimized settings was evaluated from the
�2 test (e.g., Ménard and Chang, 2000; Zupanski and Zu-
panski, 2006). The �2 is estimated from the ratio of the ac-
tual OmF to the estimated background covariance. For this
test, the innovation statistics are diagnosed from the OmF�
yo�H
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, the estimated error covariance in the obser-

vational space
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, and the number of observa-
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Using this statistics, the �2 is defined as follow:

�2 =traceYYT , (15)

where H is the non-linear observational operator and the H
is the linearization of the observation operator. The mean

Self-consistency check: Chi-square test

(Miyazaki et al., 2012b)
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Influences on the oxidation capacity
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(Miyazaki et al., 2012b)

The obvious changes in the OH fields reveal the great potential of the 
multiple species assimilation to influence the NOx emission inversion etc.

•The OSEs confirm that the assimilation of each species data set has a 
strong influence on both assimilated and non-assimilated species.
•The inter-species influences are tightly associated with the changes in 
OH because of the chemical interactions in the CO-OH-Ox-NOx system.
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NOx emissionsCO emissions Lightning NOx

   JAN
(a priori)

 JAN
(incr.)

   JUL
(a priori)

 JUL
(incr.)

January

July

A priori

Analysis
inc.

A priori

Analysis
inc.

2007

(Miyazaki et al., 2012a)

42.8 TgN

43.8 TgN

46.7 TgN

52.0 TgN

4.4 TgN

5.2 TgN

5.7 TgN

7.3 TgN

878 TgCO

1095 TgCO

906 TgCO

1114 TgCO



Surface NOx emissions in 2007

44.5 TgN

39.7 TgN

(Miyazaki and Eskes, 2013)

Annual emission Seasonal amplitude Max month

Assim Assim Assim

Assim-Inventories Assim-Inventories Assim-Inventories

Inventories Inventories Inventories



This study  (uses chemically-related species obs)

O3, NO2, HNO3, CO obs
Constrain the chemical system

Reduce model errors and 
improve the emission analysis

？

Top-down NOx emission estimates from satellite observations

Previous studies  (only NO2 obs 
used)

NO2 obs

Obvious 
influences of 
model errors

(e.g., Martin et al., 2003; Jaeglé et al., 2005) 



Multiple species constraints on surface NOx emissions
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Northern Hemisphere

Tropics

Southern Hemisphere

Eastern China

South America

Central Africa
Southern Africa

Eastern US

Southeast Asia

Europe

 A priori
 MDA
 SDA
 REAS v2.1

25.3  29.2  30.4

11.3  13.6  14.8

2.67  3.11  3.62

3.81  5.26  5.03  5.87

0.57  0.67  0.80

4.61  4.65  4.77

0.31  0.52  0.53
1.61  2.33  2.54

4.25  4.79  4.85

1.33  0.83  0.80

• The multiple datasets assimilation (MDA) provides additional constraints, as a consequence of 
the NO2 profiles being modified by the non-NO2 observations. 
• The large influences of non-NO2 data highlight the large uncertainty (by 58% on regional scale) in 
the NOx emissions inverted from NO2 observations only (SDA: single dataset assimilation).

(Miyazaki and Eskes, 2013)

TgN
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 Bottom-up: The lightning and subsequent NOx formation are determined 
with the help of empirical parameterizations. 

Accurate estimates of LNOx are important to understand variations in 
NOx, the oxidizing capacity, and several greenhouse gases (O3, CH4).

(From Folkert Boersma)

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Vertical NO distribution for IC & CG 
flashes

Total lightning NO profile

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Vertical NO distribution for IC & CG 
flashes

Total lightning NO profile

The LNOx parameterization in TM5

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Vertical NO distribution for IC & CG 
flashes

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

NO production per IC & CG flash

Spatial (2-D) and temporal distribution 
of lightning flashes

Ratio of IC to CG flashes

Spatial (2-D) and temporal distribution 
of lightning flashes

(Price and RInd, 1992)

 Larger uncertainly in the estimated total amount of NOx globally produced 
by lightning, i.e. ranging from 2 to 8 TgN/yr.



Top-down approach: Satellite data assimilationFigure 2. (a) The TES CO a priori profile and its standard deviation, provided by MOZART-3, for the
latitude 54!N–18!N zone, and (b) the MOPITT a priori profile and its standard deviation. The TES and
MOPITT standard deviations are obtained from the square root of the diagonal terms of TES and
MOPITT covariance matrices, respectively. For comparison purposes, the MOPITT covariance matrix is
interpolated to a 21 level TES pressure grid between 1000 hPa and 146.8 hPa (see Table 1).

Figure 3. Averaging kernels for 1 July 2006 for (a) MOPITT (AMOP) at MOPITT pressure levels, (b) TES
(ATES) at the TES pressure levels closest to the MOPITT pressure levels, (c) pressure-layer-normalized
averaging kernels for MOPITT (AMOP

N ), and (d) pressure-layer-normalized averaging kernels for TES
(ATES

N ). The unit of the pressure-layer-normalized averaging kernels is hPa!1, and TES averaging kernels
are plotted on essure levels from 1000 to 150 hPa.

D21307 HO ET AL.: GLOBAL COMPARISONS OF TES AND MOPITT CO

4 of 12

D21307

[8] The averaging kernels give the sensitivity of the
retrieved state to the true state of the atmosphere. The trace
of the averaging kernel matrix gives a measure of the number
of independent pieces of information available in the meas-
urements, more commonly referred to as the degrees of
freedom for signal (DOFS) [Rodgers, 2000]. Figure 1 shows
TES ozone and CO retrieval characteristics for 15 August
2006. On average, for ozone there are between three and
four DOFS for the full retrieved profile (shown by the black
crosses in Figure 1a) and less than 1.5 DOFS for the
tropospheric part of the profile north of 20!S. Discontinu-
ities in the DOFS at different latitudes are due to changes in
the constraint matrix used in the retrieval [Kulawik et al.,
2006; Osterman et al., 2008]. The TES CO retrievals are
sensitive primarily to the troposphere, as shown in

Figure 1c, with between 1 and 1.5 DOFS for the tropospheric
profile. The stratospheric retrieval adds approximately 0.5
DOFS to the tropospheric profile retrieved for CO.
[9] Averaging kernels for the troposphere and lower

stratosphere for profiles of ozone and CO retrieved over
the southeastern USA at 30!N and 87!Won 15 August 2006
are shown in Figures 1b and 1d respectively. Of the total
3.92 DOFS for the retrieved profile of ozone, 1.15 comes
from the troposphere indicating a reasonable level of
sensitivity in the troposphere, particularly between 1000
and 500 hPa as shown by the averaging kernels colored
red. In the midtroposphere and upper troposphere/lower
stratosphere, the information is spread over a wider vertical
range, illustrating the coarse vertical resolution. For the CO
retrieval, the troposphere contributes 1.12 to the total of 1.58

Figure 1. TES ozone and CO retrieval characteristics for 15 August 2006. Figures 1a and 1c show the
degrees of freedom for signal (DOFS) for both the full (black crosses) and tropospheric (red
crosses) ozone and CO profiles, respectively, as a function of latitude. Figures 1b and 1d show
an example of an ozone and a CO retrieval, respectively, at 30!N and 87!W with averaging kernels for
the lower troposphere (red), the midtroposphere (green), and the upper troposphere/lower stratosphere
(blue).

D18307 PARRINGTON ET AL.: TES OZONE ASSIMILATION
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D18307TES O3
OMI NO2 MLS O3, HNO3

TES: DoF>1 for the middle/upper troposphere. Provides observations of ozone-enhanced 
layers downwind of convective events (valuable for estimating the LNOx profiles.)
OMI:  The overpass time (13:30) is more suitable for LNOx estimation than the morning 
time observation (GOME-2, and SCIAMACHY). For the cloud-covered observations the AK 
shows a sharp drop roughly halfway the cloud, and very small sensitivities below.
MOPITT: (indirectly) affects the LNOx source estimation through their influence on the 
oxidation capacity and the NOx chemistry. 
MLS: have a great potential to constrain the LNOx sources in the upper troposphere (i.e., 
the long lifetimes of NOx, HNO3, and O3  in the upper troposphere).

MOPITT CO

Top-down approach uses satellite retrievals of chemical species to 
obtain optimal value of lightning NOx source in CTM simulation. 
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Lightning signals in CHASER normalized by observation error

OMI NO2

 TES O3
300 hPa

MLS O3
215hPa

MLS HNO3
 150 hPa

OMI NO2: The lightning signals 
are large compared to the local 
super-observation error over the 
tropical Atlantic etc.

Lightning signal v.s.
observation error

TES O3: The large signals in the 
tropical upper troposphere (esp. 
over the Atlantic) are nearly equal 
to the mean observation error.

MLS O3, HNO3: The mean observation 
errors are generally much larger than the 
lightning signals, but a large number of 
observations can still provide constraints.

June-August 2007
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Annual emission Seasonal amplitude Max month

Assim

Assim
-CTM

CTM

Lightning NOx sources in 2007

(Miyazaki et al., 2013)

4.7 TgN

6.3 TgN
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Seasonal variation of the LNOx sources 
(Bottom-up and Top-down)
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Seasonal variation of the vertical LNOx profiles 
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Pressure

6.3 TgN/yr
350 moles NO/flash

The widely used lightning parameterisation based on the C-shape 
assumption underestimates the source amounts in the upper 

troposphere and overestimates the peak source height in the upper 
troposphere by up to 1 km over land.
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LNOx source increments from OSEs 
90S-90N & 1000-100hPa cross-section
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 The combined use of the multiple datasets with different vertical 
sensitivities etc facilitates the estimation of the vertical LNOx profile and 
to distinguish between the surface NOx emissions and LNOx sources. 
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Further developments in measurements and data assimilation will be 
important to reduce the uncertainty in the LNOx source estimation.
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Table 4. The global spatial correlation (Corr), global mean difference (Bias), and global mean root-mean-square error (RMSE) of the three-
monthly mean tropospheric O

3

columns (TOCs) for the OMI/MLS data of December–February (DJF) and June–August (JJA) in 2007. The
results of the CTM simulation and data assimilation for 30S�–30N� are shown.

DJF JJA
Corr Bias RMSE Corr Bias RMSE

CTM 0.85 1.92 4.16 0.92 1.41 3.26
Assim. 0.86 -0.55 2.85 0.92 0.19 2.59

Table 5. Similar to Table 3, but lists the LNOx sources obtained from the control data assimilation run (Control), with a 15% addition of
artificial OMI NO

2

bias (w/ OMI bias), with the TES O
3

bias correction (TES bias corr.), without the OMI cloud-covered observations (w/o
OMI cloud), with the SST data for 1997 (year 1997 SST), with 20 % increases in the convective mass flux (+20% convection), with 20%
increases in the a priori errors of the LNOx source and the surface NO

x

emissions (+20% LNOx err. and +20% SNOX err.), and with 15%
increases in the a priori values of the LNOx sources (+15% LNOx prior). The mean bias (standard deviation) obtained from all the estimates
are also listed. The total bias due to all terms is computed as a random addition of the individual biases. See the text for details.

January July
NH TR SH GL NH TR SH GL

Control 0.78 3.99 1.39 6.15 4.69 2.99 0.50 8.18

w/ OMI bias 0.87 3.97 1.46 6.31 4.61 3.08 0.50 8.18
TES bias corr. 0.68 3.79 1.36 5.83 4.19 2.74 0.29 7.21
w/o cloud OMI 0.76 4.04 1.31 6.09 4.13 2.89 0.29 7.33
year 1997 SST 0.76 3.89 1.37 6.03 4.71 3.06 0.51 8.26
+20% convection 0.80 3.76 1.37 5.89 4.27 2.99 0.50 8.09
+20% LNOx err. 0.83 3.75 1.32 5.90 4.59 2.93 0.51 8.03
+20% SNOx err. 0.81 3.77 1.27 5.85 4.58 2.83 0.50 7.90
+15% LNOx prior 0.83 4.10 1.48 6.41 5.29 3.16 0.57 9.02

Standard dev. 0.05 0.14 0.07 0.21 0.35 0.13 0.10 0.53
Total bias 0.16 0.47 0.20 0.66 1.06 0.38 0.31 1.58

Table 6. The mean ozone concentration bias (in ppbv) between the CHASER simulations and the global ozonesonde observations for January
2007 in the NH (25�N–90�N) and for July 2007 in the tropics (TR, 25�S–25�N) and the SH (90�S–25�S). The CHASER simulation results
using the a priori emissions sources (A priori), the LNOx sources (LNOx), and the LNOx sources and surface NO

x

emissions (L+SNOx)
are shown. The results from the CHASER-DAS simultaneous assimilation are also listed (DAS).

NH in July TR in January SH in January
A priori LNOx L+SNOx DAS A priori LNOx L+SNOx DAS A priori LNOx L+SNOx DAS

750–450 hPa -12.3 -11.7 -0.2 -1.8 18.5 20.2 16.6 16.4 -4.1 -2.0 -2.8 -4.9
450–200 hPa -6.8 -5.9 0.7 1.3 8.9 9.5 3.3 3.3 9.9 7.4 3.4 -1.0
200–90 hPa 19.8 19.7 4.8 4.5 42.2 34.9 21.7 10.4 219.5 136.2 149.5 45.3

Error estimation

( and more error sources in the chemical schemes etc (e.g., Stavrakou et al. 2013)
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6.3 Validation using forward CTM simulations

The O
3

concentrations simulated using the estimated light-
ning and surface sources in CHASER are used to indirectly
validate the performance of the estimated sources, as summa-1095

rized in Table 6. In the validation, the multiplication factors
for the LNOx sources and the surface emissions estimated
from the assimilation are used as inputs to forward CHASER
simulations without adjusting the chemical concentrations by
assimilation. The validation is made when lightning is ac-1100

tive; e.g. for July in the NH and for January in the tropics
and the SH. The ozonesonde observations from 39 locations
were taken from the World Ozone and Ultraviolet Data Cen-
ter (WOUDC)/Southern Hemisphere Additional Ozoneson-
des (SHADOZ) database, as in Miyazaki et al., (2012a). By1105

using the estimated LNOx sources instead of the sources
predicted by the model parameterization, CHASER simula-
tions showed improved agreement with independent global
ozonesonde observations. The improved agreement includes
13% reductions in the negative bias in the middle/upper tro-1110

posphere for the NH, 17% reductions in the positive bias in
the upper troposphere for the tropics, and about 25–50% re-
ductions in the positive bias in the middle/upper troposphere
for the SH. The CHASER simulation showed further im-
proved agreement with the ozonesonde observations, by us-1115

ing the surface NO
x

emission data from the multiple data as-
similation instead of the emission inventories, together with
the estimated LNOx sources. This reduced the ozone bias
in the NH and the tropics throughout the troposphere. These
results demonstrate the improved consistency of the concen-1120

trations and emissions through the multiple datasets assim-
ilation and confirm the quality of the estimated sources as
inputs to CTM simulations. We note that the concentration
adjustment by the simultaneous data assimilation play an im-
portant role in further improving the ozone fields especially1125

in the upper troposphere and the lower stratosphere.

6.4 Comparisons with previous estimates

Based on various estimation results, Schumann and
Huntrieser (2007) have provided a best estimate of 5±3 TgN
for the annual global LNOx source. Our estimate of 6.3 TgN1130

is well within the range of the best estimate. The mean anal-
ysis spread for the annual global source was estimated at 0.9
TgN. From the systematic satellite and model uncertainties
listed in Table 5 we obtain an additional error estimate of
about 1 TgN per year (0.7 in January, 1.6 in July). This is1135

also within the range of the recent best estimate and supports
the conclusion of Schumann and Huntrieser (2007). More
recently, Murray et al. (2012) and Stavrakou et al. (2013)
estimated a global annual LNOx source of 6±0.5 TgN and
3.3–5.9 TgN, respectively. These estimates are also close to1140

our estimate. In spite of the good agreement in the estimates
of the annual global source, the LNOx source varies signif-
icantly with season and year, and differences will be more

pronounced when comparisons are made regionally. Detailed
comparisons on monthly and regional scales including those1145

seasonal variations remain an important topic for future stud-
ies.

6.5 Error estimation

Uncertainties in the observation, the model, and the assimi-
lation settings lead to the total error of 0.66 TgN for January1150

and 1.58 TgN for July (Table 5). The total mean, range and
standard deviation on the global LNOx source from these es-
timates are 6.05±0.21 TgN (range 5.83–6.41 TgN) for Jan-
uary, and 8.02±0.53 TgN (range 7.21–9.02 TgN) for July.
The standard deviation of the estimated LNOx source gen-1155

erated by varying the assimilated data was estimated at 0.96
TgN for January and 1.23 TgN for July (Table 3). However,
we note that because of differences in the relative importance
of individual assimilated datasets for adjusting the LNOx
source (e.g. leaving out the OMI retrieval changes the source1160

estimation results considerably), the standard deviation es-
timated by varying the assimilated data can not be used to
estimate the error bar for the estimated source.

Nevertheless, the large spread of the different estimates in-
dicates that estimates of the LNOx source distribution and1165

the global LNOx source amount are highly sensitive to the
satellite data used, the model and the assimilation frame-
work. Subsequent use of new measurements is expected to
influence the source estimation to a considerable degree. Fur-
ther developments in measurements and data assimilation1170

will be important to reduce the uncertainty in the LNOx
source estimation.

7 Conclusions

The global source of lightning-produced NO
x

(LNOx) is es-
timated from an assimilation of multiple chemical species1175

based on an ensemble Kalman filter approach. NO
2

, O
3

,
HNO

3

, and CO measurements obtained from multiple satel-
lite instruments (OMI, MLS, TES, and MOPITT) provide
comprehensive constraints on estimates of the global LNOx
source. This approach has the potential to reduce the influ-1180

ence of model errors on the LNOx source estimation by si-
multaneously optimizing various aspects of the chemical sys-
tem, including the surface emissions of NO

x

and CO as well
as the concentrations of 35 chemical species. Errors in these
model fields other than the LNOx sources introduce addi-1185

tional model–observation mismatches into the inversion and
degrade the LNOx source estimation. In most previous top-
down estimates, only LNOx sources were optimized from
NO

2

measurements. In such cases, the LNOx sources may
be overcorrected since analysis increments are introduced to1190

compensate for various sources of model error. Substantial
differences in the estimated LNOx sources are obtained be-
tween the single-parameter (LNOx) inversion and the com-

c.f.  Schumann and Huntrieser (2007) have provided a best estimate of
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For further improvements in the emission estimates
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OSSEs with a careful consideration of the complex chemical interactions and 
measurement characteristics for various species (incl. the seasonality) will 

support future instrumental design to improve the emission analysis.



• In the simultaneous DA framework, improved atmospheric 
concentrations of chemically-related species have the potential 
to improve the emission inversion, while the improved 
precursor’s emission estimates benefit the concentration 
analysis through a reduction in the model forecast error. 

• Assimilation of multiple datasets with different vertical 
sensitivities provides comprehensive constraints on the various 
emission sources. More datasets will be used to analyze further 
emission sources (e.g., VOCs) for improving the ozone analysis. 

• Emissions from lightning etc (not only at the surface) 
considerably influence the predictability and the analysis 
quality of chemical compounds in the troposphere.

• Problems: very high computational cost, model errors etc.

Summary
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Figure 2. (a) The TES CO a priori profile and its standard deviation, provided by MOZART-3, for the
latitude 54!N–18!N zone, and (b) the MOPITT a priori profile and its standard deviation. The TES and
MOPITT standard deviations are obtained from the square root of the diagonal terms of TES and
MOPITT covariance matrices, respectively. For comparison purposes, the MOPITT covariance matrix is
interpolated to a 21 level TES pressure grid between 1000 hPa and 146.8 hPa (see Table 1).

Figure 3. Averaging kernels for 1 July 2006 for (a) MOPITT (AMOP) at MOPITT pressure levels, (b) TES
(ATES) at the TES pressure levels closest to the MOPITT pressure levels, (c) pressure-layer-normalized
averaging kernels for MOPITT (AMOP

N ), and (d) pressure-layer-normalized averaging kernels for TES
(ATES

N ). The unit of the pressure-layer-normalized averaging kernels is hPa!1, and TES averaging kernels
are plotted on essure levels from 1000 to 150 hPa.
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[8] The averaging kernels give the sensitivity of the
retrieved state to the true state of the atmosphere. The trace
of the averaging kernel matrix gives a measure of the number
of independent pieces of information available in the meas-
urements, more commonly referred to as the degrees of
freedom for signal (DOFS) [Rodgers, 2000]. Figure 1 shows
TES ozone and CO retrieval characteristics for 15 August
2006. On average, for ozone there are between three and
four DOFS for the full retrieved profile (shown by the black
crosses in Figure 1a) and less than 1.5 DOFS for the
tropospheric part of the profile north of 20!S. Discontinu-
ities in the DOFS at different latitudes are due to changes in
the constraint matrix used in the retrieval [Kulawik et al.,
2006; Osterman et al., 2008]. The TES CO retrievals are
sensitive primarily to the troposphere, as shown in

Figure 1c, with between 1 and 1.5 DOFS for the tropospheric
profile. The stratospheric retrieval adds approximately 0.5
DOFS to the tropospheric profile retrieved for CO.
[9] Averaging kernels for the troposphere and lower

stratosphere for profiles of ozone and CO retrieved over
the southeastern USA at 30!N and 87!Won 15 August 2006
are shown in Figures 1b and 1d respectively. Of the total
3.92 DOFS for the retrieved profile of ozone, 1.15 comes
from the troposphere indicating a reasonable level of
sensitivity in the troposphere, particularly between 1000
and 500 hPa as shown by the averaging kernels colored
red. In the midtroposphere and upper troposphere/lower
stratosphere, the information is spread over a wider vertical
range, illustrating the coarse vertical resolution. For the CO
retrieval, the troposphere contributes 1.12 to the total of 1.58

Figure 1. TES ozone and CO retrieval characteristics for 15 August 2006. Figures 1a and 1c show the
degrees of freedom for signal (DOFS) for both the full (black crosses) and tropospheric (red
crosses) ozone and CO profiles, respectively, as a function of latitude. Figures 1b and 1d show
an example of an ozone and a CO retrieval, respectively, at 30!N and 87!W with averaging kernels for
the lower troposphere (red), the midtroposphere (green), and the upper troposphere/lower stratosphere
(blue).
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Observation operators
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PITT, OMI, and MLS are assimilated into the global chem-
ical transport model (CTM) “Chemical AGCM for study of
atmospheric environment and radiative forcing” (CHASER).
TES has the potential to efficiently constrain tropospheric
O

3

profiles (Foret et al., 2009). MOPPIT is suitable for
global CO emission estimates because of its good global
coverage. MLS is expected to provide important constraints
on the background concentrations of O

3

, HNO
3

, and other
O

3

precursors in the UTLS together with lightning NO
x

sources. The high temporal and spatial resolutions of the
OMI are useful to optimize NO

x

emissions on a daily ba-
sis. The assimilation results are validated against indepen-
dent data, obtained from five satellite instruments, MLS/OMI
(tropospheric O

3

column, TOC), TES (CO), and GOME-
2 and SCIAMACHY (tropospheric NO

2

column). Global
ozonesonde data and aircraft observations obtained during
the INTEX-B campaign (Singh et al., 2009) are also used
for the validation of the vertical profiles. To the authors best
knowledge, this is the first advanced data assimilation system
that simultaneously optimizes the concentrations and emis-
sions of multiple tropospheric trace gases, based on multiple
satellite sensor/species data sets. The structure of this pa-
per is as follows. Section 2 describes the data. Section 3
introduces the data assimilation system. Section 4 presents
Observing System Experiment (OSE) results to identify the
relative contribution of each assimilated data set. Section 5
presents the data assimilation results including the estimated
emissions, the validation, and the properties of the assimi-
lated fields. Section 6 concludes this study. Section 7 dis-
cusses future challenges.

2 Observations

This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator, H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator, S. Then the averag-
ing kernel, A, and the a priori profile, xa, of each observa-
tion are applied to obtain the model fields in the observation
space, yb,

yb =H(x)=xa+A(S(x)�xa). (1)

The averaging kernel matrix is used to define the sensitiv-
ity of the estimated state to changes to the true state, while
the trace of the averaging kernel matrix gives a measure of
the number of independent pieces of information, i.e. the
Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In
this approach, the satellite-model difference (yo�yb) is not,
or only weakly, biased by the a priori profile xa (Eskes and
Boersma, 2003; Rodgers and Connor, 2003),

yo�yb =A(xtrue�S(x))+✏, (2)

where the observational error ✏ is the sum of the measure-
ment error and the representativeness error (both random and
systematic), and xtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5⇥ 2.5� (1.25⇥ 1� for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO
2

column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13⇥ 24 km at nadir, in-
creasing in size to 24⇥ 135 km for the largest viewing an-
gles. OMI tropospheric NO

2

column retrievals, with their
daily global coverage, are effective to constrain global NO

x

emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NO

x

sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO

2

data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO

2

retrievals for individual pixels can be approximated as
1.0⇥ 1015 moleccm�2 + 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al. (2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO

2

columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8�, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described by Miyazaki et al. (2012). The super-observation
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column). Global
ozonesonde data and aircraft observations obtained during
the INTEX-B campaign (Singh et al., 2009) are also used
for the validation of the vertical profiles. To the authors best
knowledge, this is the first advanced data assimilation system
that simultaneously optimizes the concentrations and emis-
sions of multiple tropospheric trace gases, based on multiple
satellite sensor/species data sets. The structure of this pa-
per is as follows. Section 2 describes the data. Section 3
introduces the data assimilation system. Section 4 presents
Observing System Experiment (OSE) results to identify the
relative contribution of each assimilated data set. Section 5
presents the data assimilation results including the estimated
emissions, the validation, and the properties of the assimi-
lated fields. Section 6 concludes this study. Section 7 dis-
cusses future challenges.
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This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator, H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator, S. Then the averag-
ing kernel, A, and the a priori profile, xa, of each observa-
tion are applied to obtain the model fields in the observation
space, yb,

yb =H(x)=xa+A(S(x)�xa). (1)
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ity of the estimated state to changes to the true state, while
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the number of independent pieces of information, i.e. the
Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In
this approach, the satellite-model difference (yo�yb) is not,
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Boersma, 2003; Rodgers and Connor, 2003),

yo�yb =A(xtrue�S(x))+✏, (2)

where the observational error ✏ is the sum of the measure-
ment error and the representativeness error (both random and
systematic), and xtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5⇥ 2.5� (1.25⇥ 1� for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO
2

column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13⇥ 24 km at nadir, in-
creasing in size to 24⇥ 135 km for the largest viewing an-
gles. OMI tropospheric NO
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column retrievals, with their
daily global coverage, are effective to constrain global NO
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emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NO
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sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO

2

data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO

2

retrievals for individual pixels can be approximated as
1.0⇥ 1015 moleccm�2 + 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al. (2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO

2

columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8�, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described by Miyazaki et al. (2012). The super-observation

• The observation operator (H) converts the model profiles to the profile 
that would be retrieved from satellite measurements.

(Rodgers, 2000; 
Eskes and Boersma, 
2003)

• The model-satellite difference (the innovation) is not biased by the a 
priori profile

• The observational error matrix (R) in each retrieval includes smoothing error, 
systematic error, measurement error, and representativeness error.


