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Introduction

Wildfires release significant amounts of trace gas and aerosols into the atmosphere. Firefighters are
exposed to wildland fire smoke with adverse health effects. At larger scale, depending on
meteorological conditions and fire characteristics, fire emissions can efficiently reduce air quality
and visibility, even far away from emission sources. Uncertainties in fire emissions and fire plume
dynamics are two important factors which substantially limit the capability of current models to
predict smoke exposure and air quality degradation. The approach developped here is to develop
very high (50 meters) resolution models to explicitely resove these plumes and emission in order to
better numerically understand and estimate these phenomenons.

A collaborative effort recently started in France to develop a coupled fire-atmosphere model based
on the fire propagation model ForeFire, developed at the University of Corsica, and the mesoscale
non-hydrostatic meteorological model Meso-NH, developed by the University of Toulouse and
Meteo-France. ForeFire is a semi-physical model based on an analytical estimation of the rate of
spread and an integration with a front tracking method.

Wildfire coupled model

To be representative of the phenomenon, typical resolution required for the simulation of a fire
front or a lava flow is sub-meter (to have an explicit flame depth or narrow flow width) while
atmospheric simulation of a typical domain (several tens of square kilometres) may not be
performed at a resolution of finer than 50 meters in a reasonable computational time. Front tracking
is performed by means of Lagrangian markers that allow simulating interface dynamics at high
spatial resolution, temporal scheme is event based with a Courant—Friedrichs—Lewy constant time
step calculated for each marker iteration, allowing efficient simulation focused on active flow areas.

The Lagrangian front dynamics is used to construct a “time of arrival” high-resolution field that is
used to perform local budgets of the different surface fluxes models in a way similar to the level-set
method. The two way coupling in a Meso-NH/ForeFire simulation typically involve the surface wind
to drive the fire, and heat and water vapour fluxes to be injected in the atmosphere at each
atmospheric time step. The ForeFire code has been built so that several front velocity function could
be easily defined and applied at different locations of the surface (e.g. a fire front velocity model
could be different in forest with canopy than in grassland), likewise surface fluxes models
(combustion) can be added and defined in the same way, superposed as surface layers with each
layer corresponding to an energy, mass or species flux that will be forced in the atmospheric model.

Meso-NH and ForeFire resolutions are independent and the computational time needed by the
surface model is a typically a fraction of the atmospheric simulation. Parallel strategy for the surface
model mimics the one in the atmosphere model (with Lagrangian markers sent between parallel
sub-domains), thus recovering the parallel efficiency of the atmospheric optimized parallel design.

Simulations



In order to estimate the opportunity to use this coupled code, high-resolution simulations on
wildfire experiments was performed and presented better possible diagnostics (atmospheric flow)
than non-coupled simulations [Leroy et. al. 2013] [Filippi et. al. 2011, 2013a, 2013b]. The simulation
of the large 2009 3000 Ha Aulléne fire (Corsica Island, France) show that computations can be
performed at large scale in a reasonable computational time and a good overview of the large

structures presents within the plume (see figure).

Simulation of the Aullene fire at 15h20. Lines correspond to particle trajectories if they were lift
from the ground, colored by their rotating tendency. The red area corresponds to the simulated
hot air envelope and velocity around the flame.

The coupled model was used then used specifically for atmospheric compositions with online
chemistry model activated [Strada 2012]. Simulations were performed in two configurations
depending on the spatial resolution: with or without the feedback of the atmosphere on the fire
propagation.

At kilometric resolution, the model was used off-line to simulate two Mediterranean fires: an arson
wildfire that burned in 2005 near Lancon-de-Provence, south-eastern France, and a well
documented episode of the Lisbon 2003 fires (in collaboration with the University of Aveiro,
Portugal). The question of the injection height is treated with an adaptation of the eddy-
diffusivity/mass flux approach for convective boundary layer and compared to the 1D Plume Rise
Model (developed at INPE) in contrasted meteorological scenarios. At higher resolution, the two-
way coupled model was tested on idealized and real fire cases including ozone chemistry showing
reasonable agreements with observation [Strada 2012].

Current developpements are focused on coupled lava flow/atmosphere simulations and on surface
emissions and combustion chemistry models.
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Fires

- One of the most disturbance agent in terrestrial ecosystems on a
global scale (millions of km? per year)

- Humans are responsible for about 90% of biomass burning (agriculture,
...) especially in tropical and sub-tropical ecosystems

- Since the early 80's, biomass burning is recognized to emit large
amounts of air pollutants: particles, VOC, NOx, NH3, CO (Seiler and
Crutzen, 1980)

- Annual carbon emissions from biomass burning maybe 50% of those
from fossil fuel burning.

- Atmospheric CO, growth rate interrannual variation maybe strongly
linked to interannual variability in fire activity.
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From fires to chemical emission: the “bottom-up” approaches

Emission of species | =

1 / Seiler and Crutzen (1980)

_X Fuel load X Burning efficiency X_

m2 kg (biomass)/m2 kg(burnt fuel) / kg(available fuel)  kg(species i) /kg(biomass)

2 [ Wooster et al. (2003/5) (e.g. GFAS Macc

L.
—~ composition &

| FRE_ x Conversionfactor x  Emission factor

W: Fire Radiative Energy kg(biomass) / W(FRE) kg(species i) /kg(biomass)
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Fires at the global scale:
Comparison of global CO emissions for 2003

300,00

250,00

200,00

150,00

100,00

glob VGT

M glob ATSR
glob MODIS
glob MOPITT

M glob GFED 2
glob FRP

M glob GFED 3

50,00

Source: Stroppiana et al., 2010

0,00 A

Daunting uncertainties in emissions estimates
— high variability of fires at scales finer than the resolution of current obs.
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Fires and air pollution
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Injection height: under or above ABL?
a sub-grid scale process

- Plume-in-grid models (application to fire
?)

- Statistical models (Sofiev et al., 2012)
- Physical models (1D):

i

1D PRM model (Freitas et al., 2010) maCC
EDMF (Rio et al., 2010)

Model Grid cell
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Injection height: under or above ABL?
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Emissions?
Injection height?
Chemistry close to the source?
Kaiser et al ‘_2012
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Fires in the Euro-Mediterranean region

50000 fires occur in Euro-Med / year
500000 ha of wildland and forest / year

— 85% of burnt area in the European
Mediterranean region (Portugal, Spain, Italy,
Greece, southern France)

70% occur between June and October (dry
and hot summers)

Burnt area decreases — fire prevention
strategies / improvement of fire detection —
relatively small fires

95% are human induced (traditional
agricultural practices, accidental, arson)
— wildland-urban interface fires
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Fires at the flame scale

NOT ENOUGH O2 ?
INCOMPLETE OXIDATION:
2CH4 +302 - 2CO +4H20 + HEAT

COMPLETE OXIDATION:
CH4 + 202 —- CO2 + 2 H20 + HEAT

|

PYROLYSIS: when fuel turns to gas

Fuel heated
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Fires at the flame scale

NOT ENOUGH O2 ?

INCOMPLETE OXIDATION:

Fuel + Air

— Carbon + CO + CO2 + Water + Nitrogen + HEAT

COMPLETE OXIDATION:
Fuel + Air - CO2 + Water + Nitrogen + HEAT

|

PYROLYSIS: when fuel turns to gas
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Fire physics — Energy balance
Fire behavior: relation between consumption, radiation and convection

T
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‘ heat of

combustion

wind, oxygen '\
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radiation from
fuel bed

= char oxydation = drying
= pyrolisys

Wooster M., Kin g&%
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ForeFire: Semi-physical fire spread model

to calculate the fire rate of spread.

RoS: Analytical formulation where wind and slope
effects are explicitly accounted

Rothermel's like model: fire behavior is described by
the propagation velocity of the fire front

R=R[]+A

Fire front = tilted radiant panel
which heats the vegetation in front of it
— pyrolitic step

Advance of the fire front =
front tracking algorithm

R

T (Rr) cos },(1 +siny — cosy),

(set of markers, fixed burning duration)
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(Balbi et al., 2009; Filippi et al., 2009)
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Fire spread model
Try it online : http://forefire.univ-corse.fr

A Universima
F F 1 Dl Corsica
oreFire
oW 1 4%’

Home Documentation

ForeFire is a set of simulation tools and AP| designed to perform forest fire simulation

WLLIKLE Wiki Fire history tool j\ Web simulator

Simulation Code: FILIPPI Jean-Baptiste filopi@univ-corse.fr— Web Application: GRANDI Damien damien.grandi@gmail.com

18/45 Workshop on parameter estimation and inverse modelling for atmospheric composition - October 2013 ;.EMWF



Toward an on-line coupled fire-atmosphere model

Burning area
Radiative temperature
Heat/vapor fluxes
Chemical fluxes

Forefire

Elevation
Fuel —
Humidity

wWind
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Toward an on-line coupled fire-atmosphere model

Burning area
Radiative temperature
Heat/vapor fluxes
Chemical fluxes

Forefire

Elevation
Fuel —
Humidity

wWind
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A mesoscale meteorological model Meso-NH

http://mesonh.aero.obs- MESO - N H
mip_fr/ mesoscale non-hydrostatic model

Meso-NH dynamics:

- Non-hydrostatic: acceleration of vertical wind — suitable down to
metric grid meshes

- The continuity equation contains the sound waves.
Pertinent if Mach V/c > 1 but not in meteorology !

— need to be filtered

— anelastic (removes acoustic waves analytically)
— uncompressible (mean density varies little)

Meso-NH physics

Part of the model that deal with adiabatic processes, water state
changes, subgrid processes, surface interaction, chemistry, ...
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The surface model SURFEX

http://mesonh.aero.obs-
mip fr/ mesoscale non-hydrostatic model

The surface model SURFEX for representing the ground atmosphere
Interactions by considering different surface types:

orographic friction

Snow processes :
Bulk to detailled
SNOW processes

Aerosols:
chemical emission
aerosols, dust,
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- receives atmospheric forcing
- solves the evolution of the surface

- send back to the atmosphere the
turbulent fluxes: sensible and
latent heat fluxes

ower level of
atmaospheric model

Averaged fluxes
transfemed to the
atmaospheric model

Atmosperic forcing
identical for all Tiles, Patches

Fluxes averaged
over the atmospheric
model grid box

Tiles :
Nature, Lake,
Town, Sea

Fuxes averaged
over the file Nalure

Patches for the tile Nature

SURFEX tiling and coupling with an atmospheric model
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High resolution coupling

Fuel (surface) data : 2 m resolution
(roads, houses)

.4 combustion fluxes models (5m)
1 to atmospheric resolution (50m)

Eas
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Challenges in the fire-atmosphere coupling

Physical impact of the fire into the atmospheric model:

- The model must be able to simulate the fire effects at high resolution
(10 to 50 m)

- The upward radiative flux which depends on Ts at the fourth power.
Surface temperature is classically around 300 K. In fires it is ~ 1000 K

— Upward radiative flux is 100 times larger than usual !
- The turbulent heat flux:

It usually reaches 200-1000 W/m2.

In fire the heat flux reaches 500 000 to 1 000 000 W/m2

— Upward sensible heat flux is 1000 times larger than usual !!
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The FireFlux experiment

B : Grassfie ]
/ san=es T Trailer
g __ . ® Towers
2 Y YT Medium Range Sodar @ Experiment by Clements et al,
7 W Mini-Sodar @ 400 by 800 meters
y g - EEx Wasiicite @ tall grass (1 meter),
Ignition Line
, -i"lb' . 7l @ fuel loading o = 1.08kg.m—2
i 4m
% Q) RCamera @ flaming duration 7 = 17s,
g B @ Ignition temperature T; = 505K,
.;' ? i @ lower heating value
: g Ah = 1.543107J.kg—",
: @ fraction of radiant energy xo = 0.30,
it g @ combustion efficiency E; = 0.5,
i | @ total : ! = 5355kJ.m2,
@ nominal heat fluxes about 315KW.m ™2,
@ Dead fuel moisture 9%,
@ Burn time = 10 minutes )
N 1 100 4 00
A Meters (Clements et al., 2010)
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Forekre/MesoNH
Filippi/Piatat_
! Bosseur/Clements.__
| 10m resolution, 11/201H—__
. 3\hﬁp:f fanridea.univ-corse.fr

Time: 452860 5000
Fortunately, Meso-NH proved able to simulate such extreme conditions
without any need to modify the physical algorithms (coupling by fluxes)
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The FireFlux experiment

10 |
28 meters vertical wind (m.s") D_DS MT
— Sim dx=10

8 - — Sim dx=25

50 100 150 200 250 300
(Filippi et al., 2013)
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The FireFlux experiment

50 10 meters temperature (°C) dx=10

45

Main Tower | Small Tower

Temperature (°C)

" : s ...:.II pro .._E s , I
b e . | Sieern Y fla

« Obs MT
< Obs ST
— Sim MT
— Sim ST

Obs time (s)

50 100 150 200 250 300 300 350 400 450 500 550
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(Filippi et al., 2013)

Workshop on parameter estimation and inverse modelling for atmospheric composition - October 2013 WEMWF



Transport and mixing of smoke plume:
the LETIA 2010 experiment (Corsica)
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A comparison between lidar and model
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A comparison between lidar and model

Vertical S(I:anning oflsimultalecli concentr?ﬁon [a.u.]lat LETIA (I10'.41-10'.I43 UTC, 0,5” 110) x 10" FO re Fi re/ M eSO— N H
model set-up:

700

600 -
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| Homogeneous fuel

200 -

Heat flux:
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Trajectory and injection height

S
d'a@“"of numerical and experimental piurjrje barycenter
at LETIA(05/11/2010)

350 300 250 200 150 100
Range from Lidar to West (m)

Vertical location of numerical and experimental plume barycenter at LETIA (05/11/2010)

180

140
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80t
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| | | | | | |

|
-100 -50 (l} 50 100 150 200 250 300 350 400
Range from Lidar to North

Cancellieri et al., in NHESS-D 2013

Injection height explicitly resolved (3D turbulence scheme)
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Chemical emissions from fires in the Euro-Med region:
Emission factors

Global estimates for temperate or
extratropical forests

(Andreae and Merlet, 2001; Agaki et al.,
2011)

Mediterranean vegetation type: resinuous,
schrubland, eucalyptus, deciduous
No detailed VOCs. (Miranda et al., 2004)

Combustion chamber — strong variation in
the CO/CO2 ratio between kermes oak
(<1), rosemary (1), cypress (3), eucalyptus

9).

— toward emission factors models (fuel
composition, structure and burning
conditions)
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04/2011 CN
Filippi/Bosse

0.194589428514 PN Ny 2.4836502615e-9

— high resolution simulation preserves the strong
concentrations of NOx in the smoke plume (no instantaneous
dilution of NOx in large grid cell) — ozone titration
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Chemical aging of polluted plumes: the ozone story

A

constant concentration
of volatile arganic

o E COoOMmpzounds
g 3
O9
=9
O, +NO
>
NO, Concentration
Downwind Close to the fire
O, production O, depletion

Jost et al., 2003; Trentmann et al., 2003; Masson et al.. 2006
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Chemical aging of polluted plumes: subgrid-scale chemistry

A

constant concentration
of volatile arganic
Compounds

Ozone
Production

»>

NO, Concentration
O3 production O3 depletion

Low resolution models will
overestimate ozone
production due to
concentrated (sub-grid
scale) sources !

Low resolution High resolution
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Wildland-urban interface fires: signatures on air pollution
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The AULLENE 2009 fire
3500 ha — 900 proc — 24 millions of grid points
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Outlooks
Weather-fire behavior model coupled with online atmospheric chemistry

600m 1447240 km

- large Euro-Med fires

- test chemistry & aerosols — smoke radiative forcing

- assess fuel properties (humidity, density, vegetation type, emission
factors ...) at high resolution
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The |deal experiment ?

Young smoke plume: aircratft, Aged smoke plume: aircraft,
drones, ground lidar / FTIR airborne lidar / FTIR
spectrometer, in-situ obs. spectrometer / satellite

Not the same
chemistry !

Sources:
Emission factors, burnt area, fire power
41/45 Fuel characteristics
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Application to Volcanoes — Piton de la fournaise with P.Tulet, J. Durand
Surface Fluxes over Lava, heat and C02
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Volcanoes — Piton de la fournaise with P.Tulet, J. Durand LaCy

Couplage ForeFire/LAVA, - 10h de run
Durand / Filippi / Tulet - Fev 2013
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Lava spread model
Try it online : http://forefire.univ-corse.fr/lava

® 00 /| Lava Simulation IPGP X\

&= C' | forefire.univ-corse.fr/lava/

_.27/9/2013 _10:19:59 pm

S—"

i .
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Fire and air pollution: from local to global scale

Surface Carbon Monoxide [ ppbv] mean: 71.62 max: 3830.20
180°W  10°W  120°W  100°W  BIPW  80°W  40°W  20° "

- Sources (dynamical emission factors, burnt area, ...)
- Plume dynamics (injection height: explicit vs. parameterized)

- Subgrid-scale chemistry (ozone regime, ...)

45/45

Surface Carbon Monoxide [ ppbv]  mean: 71.62 max: 3830.29
20°W W a° 10°E

80 km x 80 km

100°E  120°"E 140°"E 180°E

50 m x50 m
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Conclusions / Questions.

46/45

Goal of such models: simulate very local intense micro-
meteorological effects and pollution of wildfire.

May help sub-mesh parameterization of global model by
performing reference simulation of large wildfires.

Use of High-Resolution models for parameterization of injection
height ? By model reduction ?

Is there too little carbon in Mediterranean fires ? any use of high
resolution simulation of boreal forest ?

Dataset of well studied fire events of use for emissions?

Use of fire simple fire propagation model for simulation of
combustion dynamics.

(Modis 17/10/2013., 2012)
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State Mine Fire
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The air quality modeling system LOTOS-EUROS was forced by
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Simulated concentrations reproduce with good timing and intensity the
high PM;o concentrations observed in Lisbon (AVL & ENT)
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Uncertain locations for the Mafra and Loures ignition points

4

ForeFire applied backward in time
by providing the final fire perimeter and a constant wind

Mafra fire
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Figure 1.26. Schematic of no-wind, wind-driven, and upslope tires. From Rothermel (1972).

Fire physics — Rate of Spread
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Vegetation Biomass Burned Worldwide:
9.2 billion tonnes (metric) annually

Agricultural

waste (1190)

Charcoal prod.
& use (200)

Savannas (3160)

Domestic fuel
(2660)

Tropical Forest
(1330)

Extratropical
Forest (640)
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From fires to chemical emission: _ X Conversion factor

Conversion factor ~ constant

IERENN  om satelite:

FRP=Fire Radiative Power (W)
FRE=Fire Radiative Energy (J)=/FRP(t)dt

FRP from Meteosat/SEVIRI and
Terra&Aqua/MODIS Cmacc

Resolutions:
- MODIS (500m ~ 25ha)
- SEVIRI (3km ~ 900 ha / 15min)

++ Reduce dependence on land cover
knowledge

— - Limitations:

- cloud free atmosphere

- sampling frequency

5o faturation over intense fires

Fire Rachative Encrgy (M.J)
[
L5

b B

&

B

 Fealhermoss
C Crganic Soil "Dufi
& ‘Yiapdy Fuels

O Sphagnum Maoss
O Miscanifys

304 5 6 7 OB % 10 1 12
Fied b =sms Forned Tkl

graphics by M. Wooster
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Is fire propagation rate sensitive to the fire-atmosphere coupling?
Example: The Favone fire (25ha)

AX = Ay =Az =50m

Domain size:

2.5kmx2.5kmx 1.5 km

Duration: 4 hours

Homogeneous mediterranean schrubs
Passive tracer to mimic the smoke plume

Fire contour:

Non-coupled simulation

Observation

Coupled simulation

53/45
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Fires at the global scale

Fire perturbs a greater area over a wider variety of biomes than any other
‘natural’ disturbance (millions of km?2 per year) .

Major C cycle and landcover/biodiversity impactor — with strong
Influence on radiative budget and atmospheric chemistry.

Annual C emissions from BB maybe 50% of those from fossil fuel
burning. Post-fire, re-growth at varying rates reabsorbs C.

In key regional C emissions,
together with v. strong seasonal and diurnal cycles.

Atmospheric CO, growth rate interrannual variation maybe strongly
linked to interannual variabllity in fire activity.

Fire and climate interact — with potentially feedbacks.

Wooster M., Kin ﬁ%
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Integration of local fluxes

PAMO (1) = / d(x, t),

@ Flux model ¢ at fire resolution Z¢
Atmospheric model

l Y

@ Subgrid resolution Ax® typically < 1m

Different fluxes models for each variables Heat flux
: : ind fi Vapor flux
@ Gamma approximation : Windfied Specli:fs fluxes
O(x, 1) = x9exp(—4m/me) P} J, ‘
@ Or constant during time 7 (burning time) :
propagation model
®! t — t3(x)

)

@ [y 4; gate function on interval [0, 1],

d(x, t) = Tx”[o,ﬂ(

@ &! total heat,water, SO2 ... released
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Fig. 1: Instantaneous fluxes issued from Firestar at (a) 5m high, (b) 10m high.

With t; the arrival time, A(x) relates to the total mass/heat at x and 7(x) the
time scale of the release -
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t — t(x)

gs(x,t) = As(x)(t — t*(x)) exp(————),

a(x,t) = Ai(x)(t — t*(x)) exp(—————),

TelX
t— o

)
X)
)

(
T(x




@ Time of first marker
occurrence,

@ polygon filling method,
@ updated locally at each marker

update.
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Fluxes layers

@ One layer for each variable,
compound,

@ diagnosed as a function of
actual and arrival time




Fire impact on air pollution:
The Greek fires 2007

Turquety et al., 2009
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Chemical aging of poIIuted plumes: the ozone story
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From lidar signal to aerosol mass concentration

Lidar — backscattering radiation intensity by aerosols
To derive aerosol mass concentrations from lidar signal: need for

additional

co-located simultaneous measurements (aerosols size

distribution or mass concentration) — Corte 2012

COICO2 pge

ELPI (aerosol size distribution),

particle counter,

Nephelometer, aethalometer

60/45
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GESTOSA field experiments of fire spread in shrub
vegetation including smoke observation

(Portugal: 1998, 1999, 2000, 2001 and 2002)

(a)

7 3500 T

. ol ::1{-1:

3 A

= 2100 R
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E 14|:H:| 1 1 : : ] 1 n 1 |
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