
From global to regional inverse modelling of greenhouse gases 

F Chevallier (LSCE, Gif-sur-Yvette, France) 

This presentation discusses the potential introduction of surface fluxes (sources and sinks) in the 

control vector of the ECMWF 4D-Var . It starts from the example of the data assimilation systems 

set-up for methane (CH4) in MACC-II, before highlighting the various molecules whose surface fluxes 

are estimated through inverse modelling in this project. In each case, the inverse modelling work is 

distinct from the IFS that estimates initial conditions within a much shorter observation window 

(hours rather than months, years or decades). Merging the two types of work is an ambitious 

objective, which is made particularly challenging by the high sophistication of the prior models and 

inventories of the surface fluxes: any inverted flux map needs to pass stringent realism tests that up 

to now have favoured dedicated inversion tools compared to all-in-one systems. The presentation 

discusses this issue from the point of view of the atmospheric observations (a small and ambiguous 

signal), of the observation operator (flawed by various biases that significantly degrade inversion 

results), of the prior error statistics (for CO2, the error correlation scales are short, which makes the 

inversion problem intrinsically of very large dimension; the temporal correlation scales are large 

which hampers short assimilation windows). The conclusion emphasizes the importance of well 

characterizing the prior flux errors and the need of redundancy in the inversion systems to 

compensate for internal biases. A long inversion window is the most straight-forward way to achieve 

this redundancy. 
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Roadmap of the talk 

“The aim of the workshop is to see which existing methods could be 
used in the ECMWF operational environment for atmospheric 
composition to improve the surface boundary conditions in 
terms of fluxes, emissions, and point source releases. This could 
range from new on-line methods to better definitions of prescribed 
inventories. 
 
I would therefore appreciate if you could discuss your work and 
ideas on greenhouse gas inversions within the above framework. 
Especially, the potential use of flux increments in the 4D-Var 
control vector would be of high relevance.”  

 
   R. Engelen 
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Towards meaningful flux 
increments 

 Some regional emission budgets are very well documented. 
 Stringent benchmark. 

 
 

SO2 emissions inverted 
from MODIS AODs 
vs. emission inventories  
 
 
Nicolas Huneeus (personal 
comm., 2013) 

North America 
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– y – CO2 

 July simulation of CO2 at 4 sites in London (CHIMERE@2 km). 
 [CO2] @ 15 UTC = UK fluxes from the past 36 h + Lateral boundaries 
 Sum of the two components (continuous line) and lateral 

boundaries only (dashed line). 
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– y – CO 
 Atmospheric production and loss: example of CO 

Fortems-Cheiney et al. 
(2011, 2012) 

TgCO/year 



– y –  
 Mixture of signals: 

 Surface sources and sinks, 
 Transport, 
 Atmospheric production and loss. 

 
 The signal from the surface fluxes does not necessarily 

dominate.  
 

 All terms in the atmospheric mass budget ideally should be 
constrained. 



Northern land and tropical land carbon fluxes for the 1992 to 1996 time 
period estimated by the 12 T3L2 models plotted as a function of the 

models' post-inversion predicted mean vertical CO2 gradients for 
seasonal intervals. 

– H – long range transport 

 About 15 global transport models to invert CO2 fluxes with a 
standardized method (Stephens et al., Science, 2007). 



– H – long range transport 

 Inversion of CO2 fluxes from simulated GOSAT XCO2 
 True atmosphere represented by GEOS-Chem. 
 Inversion system uses LMDZ. 

 LMDZ vs. GEOS-CHEM : bias = 0.0 ppm, std. dev. = 0.6 ppm 
 XCO2 variability = 5.6 ppm (std. dev.)  

 Inverted fluxes biased by 0.6 GtC/yr over Europe. 

Chevallier, Feng, et al. (2010) 



– H – short-range transport 
 Most likely (R,B) tuple given the atmospheric observations.  

 Application to CH4. 
 Link with boundary layer height (from ECMWF). 

Berchet et al. 
(ACP, 2013) 



 Compare LMDZ-INCA simulations with SO2 and SO4 
surface concentrations from the EMEP network: 
 Surface emissions from the MACCity inventory; 
 Surface emissions from the inversion of MODIS AODs 

(using a simplified chemistry mechanism); 
 Bias shown. 

 
 

– H – chemistry 

Nicolas Huneeus 
(personal comm., 2013) 
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– H –  
 Transport models are flawed at all time scales, despite 

obvious skills. 
 The flaws are large enough to affect flux inversion.  

 
 Chemistry issues as well. 



 Using the NMC method on the MACC-II NRT forecast to diagnose 
background error correlations (further to a discussion with W Peters) 
 Mean FCO2 at ranges 12-36 h and 36-60 h (spin-up, …) 
 977 hPa [CO2] at ranges 36 h and 60 h 
 November-December 2012, 15 km 

 No isotropic correlations found. 
 Some wind-dependent  
 FCO2 - [CO2] correlations. 
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– B – error correlations 
 Use daily-mean eddy-

covariance flux measurements 
to assign the error statistics of 
the fluxes simulated by the 
ORCHIDEE model. 
 

 Results: 
 Small spatial correlations, 
 Large temporal correlations. 

 
 
 

Chevallier et al. (2012) 



– B – error correlations 
 Mesoscale regional inversion for NACP’s Ring2. 

 Infer the characteristic correlation length of the SiBcrop 
model from [CO2] using maximum likelihood. 

 Small error correlations inferred. 

Wu et al.  
(Tellus B, 2013) 



– B – parameter inversion 
 Invert the parameters of a process model of the fluxes 

rather than the fluxes directly. 
 Prior flux uncertainty B = Bparam + Bstruct 



– B – parameter inversion 
 Using Fluxnet data to diagnose Bstruct for the ORCHIDEE 

model. 
 When projected in the space of mole fractions, the impact of model 

error ~ transport errors (L ~ 0, std. = 1.3 ppm for surface CO2; L 
= 1200km, std. = 0.5 ppm for XCO2). 

Kuppel et al. 
(Biogeosciences, 2013) 



– B – parameter inversion 
 Using Fluxnet data to diagnose Bstruct for the ORCHIDEE 

model. 
 When projected in the space of mole fractions, the impact of model 

error ~ transport errors (L ~ 0, std. = 1.3 ppm for surface CO2; L 
= 1200km, std. = 0.5 ppm for XCO2). 

 
 Mole fraction measurements are not the most effective 

measurements to constrain process parameters (Koffi et 
al., ACP, 2013). 
 Atmospheric concentrations are an observation of 

integrated flux. 



– B –  
 Small spatial correlation lengths of the prior errors (at least 

for CO2). 
 Flux increments peak in the vicinity of the measurements. 

 
 Spreading the information via the generic parameters of a 

process model shifts the problem towards the model errors 
(within R). 
 

 Long temporal correlation lengths. 
 



Information offered by an air 
sample 



Information offered by an air 
sample 

Please get me 
out of here! 



How atmospheric inverse 
modelling works 

 Accumulating evidence about the fluxes: 
 long atmospheric windows, 
 combination of tracers. 

 



Road map of the talk 

“I would therefore appreciate if you could discuss your work and 
ideas on greenhouse gas inversions within the above framework. 
Especially, the potential use of flux increments in the 4D-Var 
control vector would be of high relevance.”  

 
 Need of specific systems with long assimilation windows 

(≥weeks) to properly extract flux information from 
atmospheric measurements. 
 Dedicated systems run in // with the IFS. 
 Within shorter data assimilation windows, use other 

measurement types than atmospheric measurements. 
 Need to get the background errors right 
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