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Outline

 GPS-RO technique: basic physics, measurement geometry.

— Processing of GPS-RO measurements, and the “standard” GPS-
RO temperature retrieval.

» Assimilation/impact of GPS-RO in NWP and reanalysis.
— Reduction of stratospheric temperature biases.
— GPS-RO “null-space”
— New dataset for model developers.

« Estimate how the GPS-RO impact scales with observation number
using and ensemble of data assimilations (EDA).

 Current/future work.

e __Summary.
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Radio Occultation: Some Background

Radio occultation (RO) measurements have been used to study
planetary atmospheres since 1960’s.

Active technique: How the paths of radio signals are bent by
refractive index gradients in an atmosphere (Snel’s Law).

Application to Earth’s atmosphere proposed in 1965, but no obvious
source of the radio signals.

Use of GPS signals discussed at the Jet Propulsion Laboratory
(JPL) in late 1980’s. In 1996 the “GPS/MET experiment”
demonstrated useful temperature information could be retrieved
from the GPS RO measurements. GPS-RO.
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GPS-RO geometry

(Classical mechanics: deflection in a gravitational field/charged particle by a spherical potentiall)

Occulting GPS

Time Delay & Bend Angle
Provide Density vs. Altitude
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Occulting LEO

IONOSPHERE Satellite

Setting occultation: LEO moves behind the earth.
We obtain a profile of bending angles, a, as a function of
Impact parameter, a.

The impact parameter is the distance of closest approach for the straight
line path. Determines tangent height, analogous to angular momentum.
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GPS-RO characteristics

*Good vertical resolution (Show an example later).

*Poor horizontal resolution:~70% of the bending occurs over a
~450km section of ray-path, centred on the tangent point (point
on path closest to surface) — broad horizontal weighting
function, with a ~Gaussian shape to first order!

»All weather capability: not directly affected by cloud or rain.

*The bending is ~1-2 degrees at the surface, falling exponentially
with height. The scale-height of the decay is approximately the
density scale-height.

»A profile of bending angles from ~60km tangent height to the

surface takes about 2 minutes. Tangent point drifts in the
horizontal by ~200-300 km during the measurement.

> ECMWF



Ray Optics Processing of the GPS RO

Observations

GPS receivers do not measure bending angle directly!
GPS receiver on the LEO satellite measures a series of phase-delays,
p (I-1), p (1), p(i+1),... at two GPS frequencies:

L1=1.57542 GHz
L2 =1.22760 GHz

The phase delays are “calibrated” to remove special and general
relativistic effects and to remove the GPS and LEO clock errors
(“Differencing”, see Hajj et al. (2002), JASTP, 64, 451 — 469).

Calculate Excess phase delays: remove straight line path delay,
Ap(i).

A time series of Doppler shifts at L1 and L2 are computed by
differentiating the excess phase delays with respect to time.
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Processing of the GPS-RO observations (2)

The ray bending caused by gradients in the atmosphere and
lonosphere modify the L1 and L2 Doppler values, but deriving the
bending angles, a, from the Doppler values is an ill-posed
problem (an infinite set of bending angles could produce the Doppler).

The problem made well-posed by assuming the impact parameter,
given by

a=nrsing r

has the same value at both the satellites (spherical symmetry).

Given accurate position and velocity estimates for the
satellites, and making the impact parameter assumption,
the bending angle, a, and impact parameter value can be
derived simultaneously from the Doppler.
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The lonospheric correction

We have to isolate the atmospheric component of the bending angle.
The ionosphere is dispersive. Compute a linear combination of
the L1 and L2 bending angles to obtain the “corrected” bending
angle. See Vorob’ev + Krasil’nikov, (1994), Phys. Atmos. Ocean, 29,
602-609.

a(@)=cay(a)-(C-Dea,(a)

/ \Constant given in

“Corrected” bending terms of the L1 and — fu

angles L2 frequencies. (ﬂf — fé
How good is the correction? Does it introduce time varying
biases? Impact on climate signal detection? | don’t think it’s a
major problem in regions where the GPS-RO information content
IS largest.
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lonospheric correction: A simulated example
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The “correction” is large. Traceability of GPS-RO?

<> ECMWF



Deriving the refractive index profiles

Assuming spherical symmetry the ionospheric corrected
bending angle can be written as:

o d|
a(a) = -2 j " dx

_— \/
Corrected Bending angle X a

as a function of impact \

parameter

Convenient variable (x=nr)
(refractive index * radius)

We can use an Abel transform to derive a refractive index profile
Note the upper-limit

of the integral! A priori information
needed to extrapolate to infinity.

a(a)

n(x) = exp j\/_
a” —x
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Aside: This kind of problem is not unique to GPS-RO

1. Phys, D: Appl. Phys., 17 (1984) 721-732, Printed in Great Britain
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Refractivity and Pressure/temperature profiles:
“Standard or Classical retrieval”

The refractive index (or refractivity) is related to the pressure,
temperature and vapour pressure using two experimentally

determined constants (from the 1950°s and 1960’s!)
This two term expression is

N — 106 (n — 1) probably the simplest

refractivity/ fo_rmu_lation for re_fractivity, but
C P C P it is widely used in GPS-RO.
— 1 _|_ 2_ W We now use an alternative
T T 2 three term formulation,
including non-ideal gas
\ effects

If the water vapour is negligible, the 2"d term = 0, and the
refractivity is proportional to the density

c,P _
~ So we have retrieved a
N ~ - C]_ R,O ' vertical profile of density!
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“Classical’ retrieval

We can derive the pressure by integrating the hydrostatic

equation -
a priori

/ “
P(2)=P(z,)-— [N@)9g(2)dz

The temperature profile can then be derived with the ideal gas law:

GPSMET experiment (1996). Groups from JPL and UCAR
demonstrated that the retrievals agreed with co-located analyses
and radiosondes to within 1K between ~5-25km.

EG, See Rocken et al, 1997, JGR, 102, D25, 29849-29866.
CCECMWF



Altitude (km)

GPS/MET Temperature Sounding
(Kursinski et al, 1996, Science, 271, 1107-1110, Fig2a)
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GPS/MET - thick solid.
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Dotted - ECMWF anal.

Results like this by
JPL and UCAR in mid
1990’s got the subject

moving.

(Location 69N, 83W.
01.33 UT, 51" May, 1995)
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GPS-RO limitations — upper stratosphere

In order to derive refractivity the (noisy — e.g. residual ionospheric
noise) bending angle profiles must be extrapolated to infinity —

l.e., we have to introduce a-priori. This blending of the observed
and simulated bending angles is called “statistical optimization”.
The refractivity profiles above ~35 km are sensitive to the choice of a
priori.

The temperature profiles require a-priori information to initialise the
hydrostatic integration. Sometimes ECMWF temperature at 45km!

| would be sceptical about any GPS-RO temperature profile
above ~35-40 km, derived with the classical approach. It will be
very sensitive to the a-priori!
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Limitations — lower troposphere

Horizontal gradient errors caused by the assumption of local
spherical symmetry (variation of humidity over 100’s km).

Atmospheric Multipath processing — more than one ray is
measured by the receiver at a given time:

=?| Single ray region — ray optics approach ok!

Multipath: More than one ray arrives at
the receiver. They interfere.

Wave optics retrievals: Full Spectral Inversion. Jensen et al
2003, Radio Science, 38, 10.1029/2002RS002763. (Also improve vertical. res.)
Improved GPS receiver software: Open-loop processing.
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Use of GPS-RO in NWP

The major Global NWP centres now assimilate GPS-RO
measurements from Metop-A and Metop-B GRAS, COSMIC and
some research missions (eg, GRACE-A/B, TSX).

NWP centres assimilate either:

— Bending angle profiles (ECMWF, MF, NCEP, Met Office, DWD,
NRL, JMA)

— Refractivity (Env. Can., ...7?)

NWP centres assimilate the measurements without bias
correction using a 1D operator.

Essentially treat the information as a profile, not a 2D, limb
measurement. NWP centres have generally very found good
Impact on temperatures between ~7-35 km.
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ECMWF Data Coverage (All obs DA) - GPSRO
18/Mar/2014; 00 UTC
Total number of obs = 101228
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Current assimilation at ECMWF

We assimilate bending angles with a 1D operator. We ignore the
2D nature of the measurement and integrate

[ ]
» dInn @
/de

a(a) = —2aj ) o

The forward model is quite simple: \ Convenient variable (x=nr)

_ evaluate geopotential heights of model levels ~ (éfractive index * radius)
— convert geopotential height to geometric height and radius values
— evaluate the refractivity, N, on model levels from P, T and Q.

— Integrate, assuming refractivity varies (exponentially*quadratic)
between model levels. (Solution: Gaussian error functions).

— Following NCEP + MF, we now include tangent point (2011).
— 2D operator being tested currently at ECMWF (CY40R3).
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Pressure(hPa)

1D bending angle weighting function @—?j

(Normalised with the peak value)
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75 i_ Sharp structure near

the tangent point
100 F E
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d_alpha/dT

(See also Eyre, ECMWF Tech Memo. 199.)

Weighting function peaks at the
pressure levels above and below the
ray tangent point. Bending related to
vertical gradient of refractivity:

Increase the T on the
lower level — reduce the
N gradient — less bending!

Increase the T on the
upper level —increase
N gradient more bending!

Very sharp weighting function in the vertical — we can resolve structures

that nadir sounders cannot!
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GPS-RO and IASI: 1DVAR simulations

Healy and Collard 2003,
QJRMS:

Power to resolve a peak-shaped error
in background: Averaging Kernel.

Expected retrieval error:
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Assumed (global) observation errors and actual
(0-b) departure statistics
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Consistent with (o-b) stats.

Met Office model varies with latitude.
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See http://www.romsaf.org/monitoring/
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Impact at ECMWF

ECMWEF has assimilated GPS-RO bending angles operationally
since December 12, 2006.

Main impact on upper-tropospheric and lower/mid stratospheric
temperatures.

— GPS-RO measurements are assimilated without bias
correction, so they can correct (some) model biases.

— Very good vertical resolution, so they can correct errors in
the “null space” of the radiance measurements.
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Impact of GPS-RO on ECMWF operational
biases against radiosonde measurements

Background = —— Standard deviation Analysis — Standard deviation
a 100 hPa temperature departure ---- Mean departure  ---- Mean

L
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Operational implementation
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Fractional improvement in the southern
hemisphere geopotential height RMS scores

a) 1000 hPa b) 500 hPa
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Similar results obtained at the other major NWP centres.
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Stratospheric ringing problem over Antarctica
reduced by assimilating GPS-RO
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BUT GPS-RO has a “null space”

« The measurement is related to density (~P/T) on height levels
and this ambiguity means that the effect of some temperature
perturbations can’t be measured. Assume two levels separated
by z1, with temperature variation T(z) between them. Now add

positive perturbation AT(z)~k*exp(z/H), where H is the density scale
height

P and T have increased
A
A PuTu,(PMu | -mmmmmmemmmoeeoooe s £ atz, butthe PIT s the

|:> T(Z)_l_AT(Z) same.
z1, T(2)

z22=71+Az
PTP/T /

 The density as a function of height is almost unchanged. A priori
Information required to distinguish between these temperature

Erofiles. gHeight of a pressure Ievelz.



Null space — how does this temperature difference at
the S.Pole propagate through the observation operator

Temperature Perturbation l Bending angle' difference (%)

601 E 60" 3

| E | ;
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B0 £ 40k~
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100 i L. — 0. | 1| f
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Temperature perturbation (K) bending angle difference (%)

The null space arises because the measurements are sensitive
to ~P(z)/T(z). A priori information is required to split this into
T(z) and P(2).
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Compare with Steiner et al
(Ann.Geophs., 1999,17, 122-138)
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ADJOINT BASED FEC/FSO Contribution (24 h)
ECMWF System, June 2011
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~2-3% data
G PS\- RO
o . _|ASI AMSU-A
=__— AIRS /
o «—TEMP
DDDDD AIREP
0 5 10 15 20 25
FEC %

<> ECMWF



Heights where GPS-RO is reducing the 24 hr forecast
errors in ECMWF system using adjoint approach

Mid—Latitude Winter Atmosphere
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Remark: Agrees with early 1D-Var information content studies.
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GPS-RO and the bias correction of
radiances

“Blas correction schemes need to be grounded by a reference.”
The reference measurements are often called “anchor?”
measurements.

GPS-RO is assimilated without bias correction — its an “anchor
measurement’”.

Demonstrated value in both NWP and reanalysis systems.

See also work by Josep Aparicio and Lidia Cucurull.
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Recent experiment removing GPS-RO from ERA-

Interim (Dec. 08, Jan-Feb 09)

Impact on bias correction. E.g., globally averaged MetOP-A, AMSU-A

channel 9 bias correction.
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Climate/reanalysis applications

RO is likely to become increasingly useful for climate
monitoring as the time-series lengthens (see also work by
RoTrends project).

« Claim: GPS-RO measurements should not be biased.

— It should be possible to introduce data from new instruments
without overlap periods for calibration.

— No discontinuities in time-series as a result of interchange of
GPS-RO instruments.

« Bending angle departure statistics derived from the ERA-
Interim reanalysis can be used to investigate this claim.
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Consistency of GPS-RO bending angles
(ERA-Interim Reanalysis, Paul Poli)

ERA-Interim daily Obs minus Background statistics GPSRO B.A. (percent) N.Hem. (20N-90N)
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Adrian
Simmons

—— ERA-Interim
12-month running average of mean 20N-90N temperatures (K)

GPS-RO and extratropical-mean temperatures

from ERA-Interim and JRA-55

— JRA-55
12-month running average of mean 205-90S temperatures (K)
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GPS-RO for model developers

Some ECMWEF forecasts of sudden warming events have been poor
(Jan 2013).

Michail Diamantakis: Numerical noise in the wind extrapolation
leads to incorrect departure points in the semi-Lagrangian scheme.

New scheme proposed/developed/tested by Michail.

Simplified 1D bending angle operator (no tangent point drift) to look
at the accuracy of the day-5 and day-10 forecasts with the new
scheme in bending angle space. Fit to operational GPS-RO data.
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Verification against sat obs: bending angle diagnostics

new
Day5 . . ... Day 10 ,
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[Standard deviation of GPS-RO bending angle errors (tool developed by Sean Healy)]

e Noticeable improvement at medium-range (day 5, 10)

e Applying non-extrapolatory scheme EVERYWHERE decreases
accuracy at medium range = combined approach the right one
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How many GPS-RO observations do we need?

— Noted GPS-RO contributes ~2-3 % of the data assimilated.

— Studies by Poli et al (2008) and Bauer et al (2014) indicated that
the impact of GPS-RO is not saturated at current ob. numbers.

— “Ensemble of Data Assimilations” (EDA) approach for
estimating the impact of new data. EG, Tan et al, QJ, 2007, vol
133, p381, ADM-Aeolus impact.

— ESA project to estimate how the impact of GPS-RO scales with
observation number.

— We’re not doing OSSEs. We only simulate the new data.
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The EDA method

n = number of ensemble

m (SPPT
Crl (SPPT) g™ (SPPT)
b (£} = = — |
Xn” (- == => | xe2 () X P (t,,,)
Analysis | F n Y
i system orecast
boundary pert.n | x& + g 2 X'+ g f

*We cycle 10 4D-Vars in parallel using perturbed observations in each 4D-Var, plus
a control experiment with no perturbations.

*The spread of the ensemble about the mean is related to the theoretical estimate
of the analysis and short-range forecast error statistics.

sInvestigate how the ensemble spread changes as we increase the number of
oul | ) | )
V aa




EDA based observation impact

Assimilation window “Saturation”
A | ‘ A l
~ ®
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l l > —— I I >
Analysis Forecast Time Number of GNSS RO profiles

« Aim to investigate ensemble spread as a function of GNSS-RO
number.

 ldentify, if and when the impact begins to saturate.
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« EDA experiments assimilate:

Setup of GNSS-RO experiments

- all operationally used GOS (apart from GNSS-RO data)
simulated | real

- plus

| GNSS-RO profiles per day

EDA _ctrl
EDA _real
EDA_2
EDA 4
EDA_8
EDA_16
EDA_32
EDA_64
EDA_128

2000
4000
8000
16000
32000
64000
128000

~ 2500

— Total of nine EDA experiment that only differ in the number of
assimilated GNSS RO data. 6 week period July-August 2008.
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Simulation of GNSS-RO data

Operational ECMWF analysis
— proxy for the “truth”

simulated GNSS-RO
bending angle
profiles

randomly distributed
observation time and location
interpolate 4 g
i)
>
Fs]
45"
60
-Th e
-180-160-140-120-100 -80 -60 -40 E}Eﬂg?ﬂ;ﬂ? 40 &0 80 100 120 140 160 180
realistic 2D
observation €<——  bending angle
errors operator

On 247 levels and looks like
GRAS data

Adjusteéto get
reasonable (o-b)s

We use a 1D operator to
assimilate this data.

> ECMWF



4D-Var test experiments (T511, July 2008)
64000 simulated GNSS-RO vs Full system

500hPa geopotential
Anomaly correlation
NHem Extratropics (iat 20.0 to 90.0, 1 0)

Date: 20080?01 OOUTO 10 20080?31 12UTO ———————————— per_an od 0001 0OUTC12UTC
oper | Mean method: fal ——e——— rdx_an rd fmo8 00UTC,12UTC

100

=S
e
et
~——
=
-,

90

- operations
o SH, Z500

500hPa geopotential 2 ™
Anomaly correlation
NHem Extratropics (lat 20.0t0 90.0. lon -180.0ta 180.0) ~ 60|
Date 20080?01 00UTC to 20080731 12UTC . . .
e g - - Just assimilating

| e 64000 simulated RO ™\
.l NH, Z500 ) !

' ' The simulated GNSS-RO
~alone cannot reproduce the
* full information content of
. the operational analyses.
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pressure (hPa)

Vertical profiles of EDA spread T(K)
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Temperature uncertainty for the analysis
— reduced with additional GNSS-RO profiles
Very good agreement between EDA _real and EDA 2
EDA analysis spread for temperature (K)
50 o QT T 50 : AN |
[ NHem.) 3 (Tropics ] A\
70 \5__,5 — NS 7 ;} —
100 7 7 100 . \ / /Z’_ :
150 I 150 +———— 7
200 : : 200 ——
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300 300 EDA 128 [T
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temperature (K)

temperature (K)
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temperature (K)
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Cross section of observation impact | gpaA » —EDA ctrl

Temperature analysis EDA _ctrl
50 -20 -125 75 -5 25 [%] 25 5 75 125 20 50

30°N 60-N 30°N 0N 30°3 60°5 90°5

« Maximum impact on upper-tropospheric / middle-stratospheric
temperatures

* Very good agreement between real and simulated GNSS RO
data in the EDA system.

« Similar pattern for geopotential height
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How we interpret the EDA spread values

Information content/error covariance studies studies in 1D-Var
framework for simulated satellite data (e.g. Eyre 1987):

Jx)=5x=x")'B'x=x") + 3 — Hx)"E+F)'(y° — H(x))
A=B1'+HRH)!

We interpret the EDA spread results as a 4D-Var theoretical
Information content/error covariance study.

The spread values are related to the theoretical error statistics, and
these are dependent on the assumed obs. error stats. and weighting
functions, not necessarily the real impact of the observations.

If the assumed error statistics are unrealistic/incorrect, the spread
values will mislead.
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Scaling of GNSS RO impact - EDA

Analysis of temperature at 100 hPa

EDA _n —EDA ctrl 00 : ................................................................................................. —eo—N.Hem|L
EDA _ctrl ] ~~+--Tropics|}
90 Y <P e SO%Ofthe impact | — —SHem L
9 1 I
; 80 L
1y
e 4
& 70- i
<
5 |
o 607 -~ 25 million
= bending
© 50 -
| angles
401 i per day
30 E — : ‘ | | /
248 16 32 64 128
today ; Number of GNSS RO profiles (1000)

Large improvements up to 16000 profiles per day
Even with 32000 — 128000 profiles still improvements possible

— No evidence of saturated impact up to 128000 profiles.

> ECMWF




Move towards 2D GPS-RO operators

 The 2D operators take account of the real limb nature of the
measurement, and this should reduce the forward model errors
defined as

H (Xt) — yt — Sf%— Forward model error

T

Noise free observation
Discrete representation
of true state from model

* Reducing the forward model errors should improve our ability to
retrieve information from the observation, but this must be balanced:

Extra Information versus Additional Computing Costs.
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2D operator assimilation

< dlnn
a(a)=-2a 4’5‘ dx

dr

— =CO0S

ds

d@ sing
ds r

d¢ ~—SIN ¢
S

Tangent point height derived from impact parameter.

Rodgers
Page 149

1 (on
S _|_ -
r or

0 _

1D

L NXT —a

/b

r

We solve these ray equations for the path up to 50 km and then revert
to the 1D approach to estimate the bending above 50 km. Zou et al
suggested similar mixed bending angle/refractivity approach.

> ECMWF



1D/2D hybrid approach

1d computation at 1d computation at
this location this location

E .
Z| interpolate 20 —4- 2d computation for ray
Lo

information to path below 50 km
the ray path

Computational cost

Occultation plane described by 31 profiles in outer loop,
but only 7 in inner loop.
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2D operator work
(Mats Hamrud)

This is how a potential problem with 2d operators is visualised.

Lets assume observations in area 1 are forward modelled using
processor 1 but observations in area 2 use processor 2.

What happens when the occultation plane goes over the boundary?

This situation doesn’t arise at ECMWF. The basic assumption is
wrong. The horizontal and vertical “interpolations” are performed on
different processors.
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HORIZONTAL INTERPOLATIONS

Interpolated
profiles

“Processor” doing b
Forward modelling of pool n
Loop through observation locations in

pool.

Find which processor will do horizontal
interpolation.

Message pass locations.

Message pass back interpolated
profiles
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Improvement in GPS-RO (o0-b) departure
statistics with 2D approach

44 —
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14 — "

Impact height (km)

"
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56 -49 42 -35 -28 -21 14 07 0 0.7

NH, COSMIC-1

Ao (%) (Full observing system)
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GPS-RO ONLY Z500 scores, NH

500hPa geopotential

Anomaly correlation cmem—— fyug
NHem Extratropics it 20.0t090.0, lon -180.0t0 180.0) e g2
Date: 20130125 00UTC to 20130228 00UTC ———— ]
rcx_an rd oper 0OUTS | Mean method: fair
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Further science improvements with the 2D
operator

Some important physics is missing. The ray tangent height is
estimated from a “constant of motion” along the path.

nr Sin (p —-ad (impact parameter)

Its not a constant! We should integrate along ray-path

d(nrsing) on
ds 00

Use an “adjusted” impact parameter (a—(a+Aaq)) value will be used
In the 2D operator to determine tangent height.

In progress. Initial results are neutral. DISAPPOINTING!
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Improving the R Matrix using the “Desrosier”
diagnostics (MF, NCEP have looked at this)

* You can estimate the observation error covariance matrix from

R~(y-HX)Ny-H(x,))"

« Talk by Niels. This is used widely now, but strictly it will only
produce the correct matrix if the correct R and B matrices are

used to compute the analysis! It doesn’t guarantee a symmetric
estimate.

 Should iterate to account for incorrect matrices.
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Metop-A rising correlation matrix
(Niels Bormann’s code: See also earlier work by Poli)

Looks like a physically 0.9
451 reasonable estimate. i
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40

Error statistics (March 2014, Global)

35+

— Metop-A Set
— Metop-A Ris
— Metop-B Set
— Metop-B Ris

R L
LN -
T T

Impact height

15t

assumed/

Suggests inflating
assumed variances
between 10-30 km.
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Summary

Reviewed the GPS-RO concept.

Outlined how we assimilate the data and impact on NWP and
reanalysis systems. Impact on the lower/mid stratosphere.

New work on using GPS-RO for testing model changes that impact
the stratospheric temperatures.

Use of EDA to estimate impact with observation number.

New/future work
— Move to a 2D operator in 4D-Var.
— Improved R matrix.
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extra

<> ECMWF



Some timings with 2D operator for the 4D-Var
“inner loop” minimization (TL and AD code.)

“Wall-clock 2D operator 1D operator Percentage
time” (s) Increase

Only GPS-RO 29 %

All observations 548 436 26 %

The increases are “very significant”, in an operational
context and need to be reduced before operational

Implementation.
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Timings on my workstation for a single profile
containing 250 bending angles (NO TPD)

__ Adjoint

0.005 0.009 0.017
2D 0.075 0.18 0.51

Calculated with the fortran CPU_TIME command.

Cost of the bending angle computation, given
Interpolated model data on height levels.

The bending angle computation 15 times larger. 2D
adjoint 6 times more costly than the 2D operator.
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2D vs 1D in full system, Z500 anomaly correlation

Above 0 = good

mean-normalised fxym minus fvug
500hPa geopotantial

Anomaly corralation
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Surface pressure information from GPS-RO

Measuring or retrieving surface pressure information from satellite
radiances has been discussed for many years (Smith et al, 1972).

The GPS-RO measurements have a sensitivity to surface pressure
because they are given as a function of height.

Hydrostatic integration is part of the GPS-RO forward model. If we
Increase the surface pressure the bending angle values increase.

Can GPS-RO constrain the surface pressure analysis when all
conventional surface pressure measurements are removed?
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NH 12 hour PMSL forecast scores

Time series curves
Surface Mean sea level pressure - nops
Mean error forecast
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GPS-RO for climate monitoring

Simulation study using the Hadley Centre
climate model

Simulation studies to assess:

« potential of GPS-RO for detecting climate trends

+ Information content of GPS-RO in relation to other sensors
Simulations use:

« Met Office Hadley Centre coupled climate model (HadGEM1)
« Climate change scenario (A1B) for 2000 — 2100

« Forward modelling of the GPS-RO bending angles

« Forward modelling of MSU/AMSU brightness temperatures

Provided by Mark Ringer (Hadley Centre)
SCECMWF



Initial comparison with observations

Bending angle trends 2001
— 2011. Courtesy of Torsten
Schmidt, GFZ, Potsdam,

(c) 2020s—2000s: Ao/a(%) (d) 2030s—2000s: Ao/a(%) Germany
;E ;EH: ‘
:—tél %Il i ’, -~ ~ \
3 5" RO bending angle trends ( [%/yr]
£ En 25 I ] ; l 3 g 1 +.05 7
- ! : i i -
[ IR D ' ' ' '
D i ; G
o g : : : :
“ 207 : T
‘1.5 -2 -15 -1 05 05 1 15 2 25 3 i ;
(f) 2050s—2000s: Aa/a(%) : : :
7 e 1 4 '

Height [km]

Impact height (km)
= 3 = =
Impact height (km)

[ % : 90°S 60°S 30°S  0°  30°N  B0°N
B L T e B e R T Latitude

<> ECMWF



Trends In the tropics may be
detectable IN about ~15 years

(a) Bendlng angle{10 rad) 26 km {d) Trend {10 rad yr "): 26 km
2 e & s T AL Detection times
't MN ”fa"’ﬁh T 1 (95% confidence intervals)
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