

Ocean data assimilation

L. Bertino, NERSC

With inputs from Johnny Johannessen, François Counillon

ECMWF seminar 8th Sept 2014

Vocabulary and Analogies with 4D-VAR

- 4D-VAR
 - Cost function (quadratic)
 - Adjoint sensitivities
 - 4D assimilation
 - Optimal solution in linear cases
- Not analogous
 - Powerful iterative gradient descent
 - Strong constraint

• EnKF

- Posterior variance (min)
- Cross-covariances
- Asynchronous EnKF
- Optimal solution in linear cases
 - but sampling errors
- Not analogous
 - Monte-Carlo framework
 - Explicit model errors

The MyOcean "Tordesillas"

- Global Modeling and Forecasting Center
 - Lead Mercator
 - NEMO + fixed based SEEK filter
- 2. Arctic Modeling and Forecasting Center
 - Lead developments NERSC
 - Exploited operationally at MET Norway
 - Based on the TOPAZ system
 - HYCOM + EnKF
- 3. until 7, see <u>http://myocean.eu</u>

Gmes

1

The HYCOM model at NERSC

- 3D numerical ocean model
 - Hybrid Coordinate Ocean model, HYCOM (U. Miami)
- Hybrid vertical coordinate
 - Isopycnal in the interior
 - Z-coordinate at the surface
 - TOPAZ4 uses 28 layers
- Coupling to sea ice model
 - EVP dynamics ...
 - Semtner Thermodynamics
- Data assimilation:
 - EnKF (probabilistic) ...

The state vector X

- 3D variables
 - Temperature
 - Salinity
 - Layer thickness (can be zero)
 - X-current
 - Y-current
- 2D variables
 - Sea ice area
 - Sea ice thickness
 - Snow depths
 - Barotropic currents + pressure
- Typical grid size
 - Horizontal: 800x880
 - Vertical: 28
 - Total unknowns: ~10^8
 - Need to perform *local* analyses

Evensen 2002

Ensemble Forecast

- 2500 CPU hours / cycle
- Embarrassingly parallel
- 100x **133 CPU 11 min** jobs
- Each job requires 400 Mb
 - MPI parallelization
 - HPC Machine:
 - Cray XE6m, updated 2012
 - 22272 cores, 205 Tflop/s

Gmes

- 676 nodes (32-cores)
- 1-4 Gb per node

<u>Analysis</u>

- 20 CPU hours / update
- 6 datasets simultaneously
- One 20 CPU 1h job
- Memory required 1 Gb
 - MPI parallelization

Production Centres

www.myocean.eu

The TOPAZ system

- Exploited operationally at met.no
 - Since 2008
 - Ecosystem added in Jan. 2012
- 20 years reanalysis at NERSC
 - Took 2 years to produce
 - 3-years ecosystem reanalysis
- MyOcean (Arctic MFC)
 - Free distribution of data
 - Dynamical viewing (Godiva2)
- Data used by ECMWF wave model (J. Bidlot)
 - Sea ice edge forecast
 - Surface currents

Ice thickness forecast for 14th Aug. 2012

Production Centres

TOPAZ Assimilation

- DEnKF, asynchronous
 - 100 members
 - Local analysis (~90 km radius)
 - Ensemble inflation by 1%
- Observations:
 - Sea Level Anomalies (CLS)
 - SST (NOAA, then UK Met)
 - Sea Ice Concentr. (OSI-SAF)
 - Sea ice drift (CERSAT)
 - T/S profiles (Coriolis)
 - 400.000 observations per week
 - ~100 in each local radius

SRF: local spread reduction factor

$$\mathsf{SRF} = \sqrt{rac{\mathrm{tr}(\mathsf{HP}^{f}\mathsf{H}^{\mathrm{T}}\mathsf{R}^{-1})}{\mathrm{tr}(\mathsf{HP}^{a}\mathsf{H}^{\mathrm{T}}\mathsf{R}^{-1})}}$$
 -

EnKF Correlations, SST

my Ocean

Production Centres

Why <u>dynamic</u> Data Assimilation in the Arctic? Example of ice-salinity correlations in the Barents Sea

Sakov et al., the TOPAZ4 system, OS 2012 Also see Lisæter et al. Oc. Dyn. 2003

Comparison to static / climatological covariances

0.5

0

-0.5

-1

0.5

0

-0.5

- 1

Dynamic ensemble

Scattergram between ICEC and SSS

Corelation between ICEC and SSS

Scattergram between ICEC and SSS 34.5 0 0 0 0 34 0 00 0 0 0 0 33.5 0 33 0 0 32.5 0 32 0 0 31.5 \bigcirc 0.2 0.4 0.6 0.8 0

Static ensemble

w.myocean.eu

w√ocean

Data assimilation statistics SLA

Independent data: surface drifters

Gmes

www.myocean.eu

9 January 2008: SLA from TOPAZ reanalysis + drifters (± 4 days)

Time

Bias, Sea surface temperature vs. drifting buoy data, forecast day: 6

In situ profiles assimilated

- A "Good period" 2003-2008
 - Argo floats
 - Sections
 - Ice-Tethered Profilers from Damocles IPY
 - All reprocessed quality controlled data
 - Not all profiles contain salinity
- Still very poor coverage compared to atmosphere

Data assimilation stats T100-300

Temperature Long-term Mean Difference

Period: 1991-2010, Depth: 100m

Temperature Long-term Mean Difference

Period: 1991-2010, Depth: 300m

Data assimilation stats S100-300

Salinity bias at 100m depths

Salinity bias at 300m depths

Validation of 1993-2009 reanalyses Solfrid Hjøllo, Vidar Lien, Morten, Henning, Einar, Gilles, Francois

TASK

- Validation of 1993-2009 reanalyses, focus on vol & heat fluxes, hydrography
- Global / Arctic MFC / (ROMS)
- Monthly means ,both free and assimilated runs
- Mean, std, seasonal cycle and trends

Færøy Shetland

	NE	SW	Net (Atl. Inflow)
Surface-to-bottom (Sv)	3.5	-3.1	0.4
Warmer than 5 °C (Sv)	3.5	-0.8	2.7
Colder than 5 °C (Sv)	0.0	-2.3	2.3
Relative Heat Transport (TW)	131	-24	107
Salt Transport (10 ⁶ kg s ⁻¹)	125	-27	98

Atlantic water T>5°C, S>35.0 Berx et al 2013

Fig. 4. Averages for the period 1995–2009 of temperature (a), salinity (b), density (σ_t) (c), and along-channel velocity superposed on the average temperature distribution (d). The velocities are based on geostrophy from CTD data corrected with altimetry-adjusted velocity data using the core interpolation. The average depth of the 5 °C isotherm along the section is indicated by the brown line on (d).

Gmes

Production Centres

Nemo free: Slightly higher salinity, temperature and speed than in assimilated run

Temperature in Faroe-Shetland Channel - TOPAZ FREE 100 200 300 Depth [m] 100 Depth [m] 600 700 800 900 _____ -4.5 -Longitude [°E] -5.5 -5 -4 -3.5 -3 -2.5

TOPAZ free: More saline AW core than in assimilated run, but AW depth similar

Temperature in Faroe–Shetland Channel – TOPAZ ASSIM

Nemo assim: Realistic hydrography: AW core at Shetland shelf slope; sloping T and S surfaces; AW above ~500 m. Too weak currents

TOPAZ assim: Realistic hydrography: AW core at Shetland shelf slope; sloping T and S surfaces; AW above ~500 m.

Færøy Shetland

- All model simulations show too low AW volume and heat transports
- Assimilation improves correlation slightly

Production Centres

Færøy Shetland

Problem of AW representation

www.myocean.eu

Gmes

Production Centres

www.myocean.eu

Icea area anomalies

Validation of operational forecasts Ice edge (A. Melsom met.no)

- <u>http://myocean.met.no/ARC-</u> <u>MFC/V2Validation/index.html</u>
- Weekly monitoring of forecast skills
- Error on ice edge: 50 km on average in European areas
- Larger errors in Summer
 - Expected from reanalysis

RMS, ice edge

RMS, ice edge

luction

Ice thickness validation

Independent satellite IceSAT (Kwok, JPL) **TOPAZ** free run

TOPAZ pilot reanalysis

Underestimates

Overestimates

Common feature of AOMIP models (Johnson et al.

www.myocean.eu

Ice thickness validation

Gmes

Production Centres

Assimilation in regional models

- We do not afford an EnKF for nested high-res models
 - Resort to a cheaper, locally-tuned EnOI
 - "Static ensemble" instead of dynamic ensemble
 - Relies on a model climatology
 - Most operational ocean data assimilation methods today are similar to an EnOI
 - Srinivasan et al. OM, 2011
 - Our experience: Gulf of Mexico, South China Sea, Agulhas currents
 - Able to constrain identifiable mesoscale features
 - Also able to handle tides while assimilating Altimeter data

Agulhas current

ww.myocean.eu

Agulhas current

18°S

27°S

36°S

45°S

00

16 14

Seasonal-to-decadal prediction with the Norwegian Climate Prediction Model

Counillon F., Bethke I., Keenlyside N., Wang Y., Bentsen M., Bertino L., Zheng F.

Norwegian Climate prediction system

- Model: NorESM
 - Ocean: UniRe Klima
 - Carbon: UiB/UniRe
- Assimilation: EnKF

NERSC

Satellite, Forcings, In Situ Data Initial cond. Uncertainties Uncertainties Atm Sea Land ice Ocean **Data Assimilation** Ocean Downscaling Carbon F. Counillon, I. Bethke, N. Keenlyside, M. Bentsen, L. Bertino, F. Zheng (2014), Seasonal-to-decadal prediction with the Ensemble Kalman Filter and the Norwegian Earth System Model: a twin experiment, Tellus A, 66, 21074 Output **Ensembles**

Gmes

Production Centres

Global skill assessment: Upper ocean temperature

RMSE calculated over the full model domain (averaged over the 10 prediction cycles)

For all model variables at 1-year lead average; 2-5 lead year average

- •Analyze reduction of RMSE in **EnKF-SST** relative to **Free**
- •Compare the improvements relative to Perfect

Conclusions

- Ocean data assimilation is worth the hassle
 - EnKF framework makes probabilistic forecasts seamless.
 - Also useful in a coupled climate model (...)
- Possible to correct both (poorly) observed and non-observed variables in the ocean
 - Still some regressions but not catastrophic
 - Ice edge accuracy within 50km, SST less than 1 deg C
- Other features are difficult to reproduce
 - Acceleration of ice drift
 - Model drift is too fast
 - Even the drift seasonality is not respected
 - Thinning of the sea ice
- R'n D to do
 - Ocean models Arctic water mass properties: better numerics or resolution

Gmes

Sea ice validation argues for a change of the model EVP rheology