The role of testbeds in NOAA for transitioning NWP research to operations

Ligia Bernardet1* and Zoltan Toth1
1NOAA ESRL Global Systems Division, Boulder CO
*University of Colorado CIRES, Boulder CO

Acknowledgements
Bill Kuo
Jamie Wolff
Sid Boukabara
Several operational NWP suites

NOAA has several NWP suites that need ongoing improvement, including…

- **Global**
 - Global Forecast System (GFS)
 - Global Ensemble Forecast System (GEFS)

- **Regional (subset)**
 - North American Mesoscale (NAM)
 - Rapid Update (RAP)
 - Short Range Ensemble Forecast (SREF) System
 - Hurricane Weather Research and Forecasting (HWRF) model
Testbeds for model improvement

- Testbeds are one of NOAA strategies to improve NWP
- Facilities in which NOAA and the community
 - plan,
 - develop,
 - and test new concepts and tools.

From Dabberdt et al., 2005
Examples of NOAA Testbeds

<table>
<thead>
<tr>
<th>Testbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Weather Testbed</td>
</tr>
<tr>
<td>Developmental Testbed Center (regional Numerical Weather Prediction)</td>
</tr>
<tr>
<td>Hazardous Weather Testbed</td>
</tr>
<tr>
<td>Hydrometeorology Testbed (extreme precipitation, QPE, QPF, hydrology)</td>
</tr>
<tr>
<td>Joint Center for Satellite Data Assimilation</td>
</tr>
<tr>
<td>Joint Hurricane Testbed</td>
</tr>
<tr>
<td>Observation System Simulation Experiment Testbed</td>
</tr>
<tr>
<td>Space Weather Prediction Testbed</td>
</tr>
</tbody>
</table>

For more information, visit http://www.testbeds.noaa.gov
Highlights from JCSDA

- **Inclusion of OSCAT scatterometer 10-m winds** in the Gridpoint Statistical Interpolator (GSI)
 - GSI is the data assimilation system used operationally at NCEP
 - Initial results neutral to positive
 - Now system is ready for further tuning

- **1st Joint DTC-JCSDA GSI tutorial and workshop**

Participants in 2013 Summer GSI Tutorial and Workshop, organized jointly by DTC, NWS/NCEP, NESDIS/STAR and JCSDA in the NCWCP building, in College Park, MD. August 5-8, 2013. Courtesy of Hui Shao. UCAR/DTC.
Highlights from HMT

- Flash Flood & Intense Rainfall Experiment (July 2013)
- 26 forecasters, researchers and model developers brought together to explore challenges in short term QPF and flood
- Several operational and research models used

12-h mean QPF valid 7/18 00

Q: Does NAM-X, HRRR, NSSL, and/or HRW provide better guidance than NAM-nest?
Developmental Testbed Center
DTC activities

- **O2R** transition: operational NWP systems are made available and supported to the research community
- **Interaction** between research & operations
 - organization of community workshops on important topics of interest to the NWP community
 - DTC Visitor Program
- **R2O** transition: NWP innovations are tested and evaluated
 - Work with both 1-2 year implementations and next-generation systems
 - Neutral position in order to provide unbiased assessment
 - Comprehensive testing for a broad range of weather regimes
 - Evaluation based on extensive objective verification statistics
- DTC is jointly sponsored by NOAA, Air Force, NSF, & NCAR
Mesoscale Model Evaluation Testbed

- Facilitates testing of new innovations by community
 - DTC provides model input and observations for case studies
 - Community tests their own innovations
 - Allows for quick comparisons against published baseline results
 - Provides a common framework for testing
 - Allows for direct comparisons among community results
- Promising capabilities nominated for extensive T&E performed by DTC
- Established data sets for nine cases
 - Open solicitation for more cases

http://www.dtcenter.org/eval/meso_mod/mmet/
DTC Highlight: Hurricane WRF

- HWRF provides guidance to the National Hurricane Center (NHC) for the North Atlantic and Eastern North Pacific basins
- Regional model 27/9/3 km
- HWRF has 8 components, many used in other applications
- Developmental Testbed Center works in
 - Support code to community
 - Code management
 - Testing and evaluation (R2O)

Operational forecasts
http://www.emc.ncep.noaa.gov/gc_wmb/vxt/
Developmental Testbed Center support

www.dtcenter.org/HurrWRF/users

Code downloads, datasets, documentation, online tutorial, helpdesk

500 registered users

Yearly releases corresponding to operational model of the year

Stable, tested code

Benchmarks available

Current release: HWRF v3.5a (2013 operational)

Next tutorial: January 14-16, 2014 in College Park, MD USA
Code management supports T&E

- **2010**
 - Initial unification code
 - community = NWS

- **2011-onwards**
 - Code Management for maintaining unification

- **Planning**
 - HWRF Dev Committee
 - Consistency Checks
 - Constant integration

- **Public release**
 - Comm trunk
 - Main HWRF development branch
 - Individual developments and T&E

- **Operational Implementation**
 - July 2013
 - HWRF public release August 2013
 - Fully documented and supported

- **Operational Implementation**
 - HWRF public release August 2013
 - Fully documented and supported

- **Operational Implementation**
 - July 2013
 - HWRF public release August 2013
 - Fully documented and supported

- **Operational Implementation**
 - July 2013
 - HWRF public release August 2013
 - Fully documented and supported
Example of collaborative testing

- Coupled HWRF tests (2007 and 2010) indicated POM-TC over-cooling
- To minimize over-cooling, atmos fluxes to POM-TC were reduced 25%
- NOAA Research (2012): POM-TC under-cools
 - Change due to higher resolution and updated physics in atmos model
- Hypothesis (University RI): flux reduction in HWRF not necessary (and should be eliminated as it is mostly non-physical)
- Comprehensive DTC by test: 2012 HWRF with and without flux reduction. Cases: entire 2012 season
- Diagnostics by DTC and NOAA Hurricane Research Division

Buoy passage 9/4 12Z

Katia (from Cione and Uhlhorn)
Atlantic track and intensity

Track ME: HD12 and HDFL very similar
Int MAE: HDFL SS better at 3 lead times
Int bias: HDFL lowers intensity and helps overintensification at long lead times
Pacific impact is much smaller (POM-TC 1D)

Positive results led to implementation in the 2013 operational HWRF model
DTC challenges and opportunities - I

- Code unification and management
 - Operational codes grow organically and are rarely re-designed
 - Variety of expectations regarding software development
 - Best software practices overlooked in fast development phases
 - Software modularity is often lost
 - Periodically, we should rewrite parts of system
 - However, funding for software engineering is scarce

- Seeking solutions to facilitate code management and modularity

I am very interested in learning from this community
DTC challenges and opportunities - II

- Business model for interacting with the research community

- Academic community would like to easily
 - Be able to run an operational system in any computational platform
 - Reproduce previous operational and research runs
 - Access variety of datasets: input, verification, other models runs

- Involves code management, databases, data service, scripting, user interfaces, documentation, training etc.

- Might involve rewriting some code in modular way

I am very interested in learning from this community, including OOPS and PrepIFS