SCIENTIFIC AND PROCESS ORIENTED EVALUATION OF CLIMATE DATA

Jörg Schulz

EUMETSAT

GCOS-WCRP Letter, 12 May 2010 to many agencies:

"However, there is currently no systematic international approach to ensure transparency, traceability and sound scientific judgement in the generation of climate data records across all fields of climate science and related Earth observations, and there are no dedicated sustained resources in place to support such an objective. For example, there are currently eight sea-ice concentration products produced by different organizations globally that differ significantly in providing an estimate of sea-ice extent and concentrations, mostly due to differences in methodology and not the variability or dynamics of underlying phenomenon. It is very confusing and frustrating for the non experts as to which one of these products they can use in their research and analysis, and the necessary documents to describe their attributes in a comparative manner akin to the global model inter-comparisons do not exist."

User Perspective

I need good new data ... and quickly. A new data product could be very good, but if it is not being conveniently served and described, it is not good for me... *So* I am going to use whatever I have and know already.

Leptoukh QA4EO'11

age 3

Adapted form Folkert Boersma, KNMI

5. WP4 Harmonised ECV retrievals & records – QA4ECV Kick-off meeting, 6-7 February 2014, De Bilt

Value Adding Chain of Climate Data

Logical view from the Architecture for Space-based Climate Monitoring developed by space agencies.

What is at Stake?

- History shows that weather observations did not become useful for society until a lexicon was agreed to;
 - The Beaufort scale did this for wind climatology and maritime commerce in the 19th century.
- To benefit society, we must adopt a lexicon that sets expectations for quality, openness, process and transparency that are accessible to the public;
 - How might we define a climate record lexicon useful to the public in the 21st century?

Slide: Courtesy of John Bates, NOAA NCDC, USA

QA4ECV Approach to E and QC

GEWEX Assessment of Cloud Data Records

"An assessment of long-term variations in global-mean cloud amount from nine different satellite datasets by Stubenrauch et al. (2013) found differences between dataséts were comparable in magnitude to the inter-annual variability. Such inconsistencies result from differences in sampling as well as changes in instrument calibration and inhibit an accurate assessment of global-scale cloud cover trends."

IPCC, Chapter 2, AR5, 2013

Project of the World Climate Research Programm Global Energy and Water Cycle Experiment (GEWEX Radiation Pane

Lead Author

WCRP Report No. 23/2012

ECMWF Climate Change Service Workshop, ECMWF, 17-18 February 2014, Reading, UK

Annual averages of the net radiation at the TOA

Geu/ex

GEWEX Radiative Flux Assessment (REA) olume 1: Assessment

A Project of the World Climate Research Programme Global Energy and Water Cycle ment (GEWEX) Radiation Pane

Stefan Kinn

December 2012 WCRP Report No. 19/2012

ECMWF Climate Change Service Workshop, ECMWF, 17-18 February 2014, Reading, UK 8

Trends in Tropical Precipitable Water and TLT

IPCC, Chapter 9, AR5, 2013, Updated from (Mears et al., 2007)

"It is not known

Annual Mean Pattern Correlation (Models vs. Obs)

IPCC, Chapter 9, AR5, 2013

Relative CMIP-5 Model Performance

IPCC, Chapter 9, AR5, 2013

Motivation for Process QC

- Climate Change is a highly applied scientific field with major aspects related to regulation and societal wellbeing;
- Increasingly complex observing systems require more process control to ensure quality, access, and preservation;
- Software Engineering is also increasingly complex and process management is required to optimize cost, schedule, productivity and quality;
- The stakes in climate change are too high to assume a standard research approach to the creation of CDRs. Society is demanding more documentation, openness, and transparency;
- It is imperative that the CCCS responds with quantifiable metrics that inform society of both the scientific quality and process maturity of CDRs.

ECV Inventory @ http://www.ecvinventory.com

ECV Inventory Statistics – TCDR Timelines

ECV Type	1970	1971	1972	1973	1974	1975	1976	1978	1979	1980	1981	1982	1983	1984	1986	1987	1988	1989	1990	1991	1992	1993	1995	1996	1997	1998	1999	2001	2002	2003	2004	2006	2007	2008	2009	2010	2012	2013	2014	2015	2016	2018	2019	2020	2021	2022	2023	2025	2026	2027
Land-surface temperature	Г												2	2	2 :	2	2 2	2	2	2	2	2	2 2	2 2	2	2	2	2 2	2	2	2	2 2	2	2	2	1	1 1	1	1	1		1	1 1	1	1	1	Т	Τ	\square	
Liquid precipitation, solid precipitation	Г								1	I 1	1	1	1	1	1 :	1 7	, ,	, ,	7	7	7	7	, ,	, ,	7	7	7	, ,	7	7	7	, ,	7	7	6	6	67	4	2	1	1	1	Τ		\square		T	T	Π	[
Maps of burnt area	Γ																Γ						2	2 2	2	2	8	3 3	3	3	3	3 3	3	3	3	3	1 1				Τ		T	Γ	\square		Τ		Π	[
Maps of LAI	Γ										2	2	2	3	3	3	3 3	3	3	3	3	3	3 3	3 3	3	3	4	4 4	4	4	4	1 4	4	4	4	4	4 3					1	1 1	1	1	1	T	Τ	Π	
Maps of the FAPAR	Γ										2	2	2	2	2 :	2	2 2	2	2	2	2	2	2 2	2 2	3	3	4	4 3	4	4	4	4	4	4	4	4	3 3					1	1 1	1	1	1	T	T	Π	
Moderate-resolution maps of land-cover type	Γ																									1	1	1 1	1	1	1	I 1	1	1	1	1	1 1					1	1 1	1	1	1	1	1 1	1	1
Ocean chlorophyll	Г										\square						Τ			Π					1	1	1	1 1	1	1	1	I 1	1	1	1	1	1 1					1	1 1	1	1	1	Т	Τ	\square	
Water leaving radiance	Γ	\top										1				T	\top								5	1	1	1 1	1	1	1	I 1	1	1	1	1	1 1					1	1 1	1	1	1	T	T	Π	
Ozone profiles	Γ								1	1 1	1	1	1	1	1		1 1	1	1	1	1	1	1 1	1 1	1	1	1	1 1	1	1	1	I 1	1	1	1	2	2 2				T	Τ	Τ		\square		T	T	Π	
Water vapor profiles	Γ												1	1	1 :	ı :	2 3	3	3	4	4	4	4 4	4	4	4	4	4 4	4	4	4	1 4	4	4	4	2	2 3	1	1	1	1	1	T		Π		T	T	Π	
Sea-ice concentration/extent/edge	Γ							,		1 1	1	1	2	2	2	2	3 3	3	3	3	3	3	3 3	3 3	3	3	3	3 3	3	3	3	3 3	3	3	3	1	1	1	1	1	1	2	1 1	1	1	1	T	Τ	Π	
Sea-ice thickness	Γ	\top	1	1	1	1	1	1 1		I 1	1	1	1	1	1 :	ı :	1 1	1	1	1	1	1	1 1	I 1	1	1	1	1 1	1	1	1	I 1	1	1							Т	Τ	Т		\square		T	T	Π	
Sea-level	Γ																				1	5	5 5	5 5	5	5	5	5 5	6	6	6	5 6	6	6	6	6	2 2				T	T	T	Γ	Π		T	T	Π	
Sea-surface temperature	Γ														1		1 1	1	1	2	2	2	2 2	2 2	3	3	3	3 3	4	4	4	1 4	4	4	4	4	3 4	1	1	1	1	2	1 1	1	1	1	T	T	Π	
Snow areal extent	1	1	1	1	1	1	1	1 1		1 1	1	1	2	2	2 :	2	2 2	2	2	2	2	2	2 2	2 2	2	2	3	3 3	3	3	3	3 3	3	3	3	2	1	1	1	1	1	2	1 1	1	1	1	T	Τ	Π	
Soil-moisture map (up to 10cm soil depth)	Г						Τ	1	ı 1	1 1	1	1	1	1	1 :	1 1	1 1	1	1	1	1	1	1 1	1 1	1	1	1	1 1	2	2	2	2 2	2	2	2	2	1 2	1	1	1	1	1	Τ	Γ	\square		Τ		\square	[
Solid precipitation	Γ																Τ							1	1	1	1	1 1	1	1	1	I 1	1	1		Τ	Τ				Τ		Τ	Γ	\square		Τ		Π	
Surface wind	Γ															1	8 8	8	9	10	9	9	9 10	0 10	12	11	12 1	2 11	12	12	12 1	12	11	11	11 1	0 1	0 4	2	2	1	1	1	Τ		\square		Τ	Τ	Π	
Total column ozone	1	L 1	1	1	1	1	1	1		1 1	1	1	2	2	3	3	3 3	4	4	3	3	3	3 4	4	4	4	3	4 4	4	4	4	5 5	4	4	5	4	4				Τ		Τ		\square	Π	Τ	Τ	\square	
Total column water vapor	Г															5	5 6	6	6	6	6	6	6 6	5 6	6	7	7	, ,	7	7	7	, ,	6	6	5	3	3 3	1	1		Τ	Τ	Τ	Γ	\square		Т	Τ	\square	
Upper tropospheric humidity	Γ							1	. 1	1 1	1	2	4	4	4	•	4 4	4	4	4	4	4	4 5	5 5	5	5	5	5 4	4	4	4	4	4	4	3	2	2 1	1				\top								
Upper-air temperature								1	. 1	1 1	1	1	2	2	2 :	2	2 2	2	2	2	2	2	2 2	2 2	2	2	2	2 2	2	2	2	2 5	5	5	5	4	4													
Upper-air wind	Γ						Τ		1	1 1	1	2	2	2	2	2	2 2	2	2	2	2	2	2 2	2 2	2	3	3	2 2	1	1	1	1 1	1	1	1	Τ					Τ	Τ	Τ		\square		Τ	Γ	Π	

14 ECMWF Climate Change Service Workshop, ECMWF, 17-18 February 2014, Reading, UK

User Perspective

I need good new data ... and quickly. A new data product could be very good, but if it is not being conveniently served and described, it is not good for me... *So* I am going to use whatever I have and know already.

Leptoukh QA4EO'11

age 15

Adapted form Folkert Boersma, KNMI

5. WP4 Harmonised ECV retrievals & records – QA4ECV Kick-off meeting, 6-7 February 2014, De Bilt

EV FP7 CORE-CLIMAX Establishing Common Practices for Climate Observations

Recent CORE-CLIMAX capacity assessment workshop studied 30+ data records established from satellite and in-situ data as well as reanalysis;

The capacity was assessed using three support tools developed by the project:

Data Record Inventories (DRI)

Contain technical specifications and also links to documented information on quality (serves as input to next obs4mips);

System Maturity Matrix (SMM)

Evaluates if the production of a CDR follows best practices for science and engineering and is assessing if data records are used and feedback mechanisms are implemented;

Application Performance Metric (APM)

Evaluates the performance of a CDR with respect to a specific application. Could be implemented as an interactive App that convolves user requirements with product specification information in a database.

Maturity Matrix Concept

	Is the software robust and maintainable?	Are the data and methods well documented?	Has the trueness of the data bee systematicall assessed?	Are data used and feedba taken ca	i well l user icks re of?
Software readiness	Metadata	User documentation	Uncertainty Characterisation	Public Access, Feedback and Update	Usage
Are the codes compliant with standards, stable, portable and reproducible?	Do the metadata meet international standards, and allow provenance tracking?	Are the formal documents and peer-reviewed papers up-to-date and public?	Are the uncertainties assessed systematically in a standard manner?	Are the data, source code, and documents publicly available and regularly updated?	Are the data widely used in the scientific, and decision and policy making communities?

	SOFTWARE MI READINESS	TADATA	USER DOCUMENTATION	UNCERTAINTY CHARATERISATION	PUBLIC A FEEDBACK,	CCESS, UPDATE	USAGE	
	Standards		Validation	Uncertainty quant	ification	Auto N	mated Quality Aonitoring	
0	None		None	None		None		
2	Standard uncertainty nomenclature is identified or defined	Valida reference loca	tion using external e data done for limited ations and times	Limited information on arising from systematic effects in the measu	uncertainty and random urement		None	
8	Score 2 + Standard uncertainty nomenclature is applied	Valida reference c temporal r	tion using external lata done for global and epresentative locations and times	Comprehensive inforr uncertainty arising from and random effects measuremen	mation on a systematic s in the t	Methods for automated quality monitoring defined		
4	Score 3 + Procedures to establish SI traceability are defined	Score 3 + (Inter)comparison against corresponding CDRs (other methods, models, etc)		Score 3 + quantitative e uncertainty provided product characterising r uncertain data p	estimates of within the nore or less oints	Score 3 + partia	automated monitoring ally implemented	
5	Score 4 + SI traceability partly established	Score participate da	4 + data provider ed in one inter-national ata assessment	Score 4 + temporal and covariance quant	spatial error tified	Score 3 implemente	+ monitoring fully d (all production levels)	
6	Score 5 + SI traceability established	Score participa national incorporat product	4 + data provider ated in multiple inter- data assessment and ting feedbacks into the t development cycle	Score 5 + comprehensive the quantitative uncertain and error covaria	e validation of nty estimates ance	Score 5 + a place with re accessible data c	utomated monitoring in esults fed back to other information, e.g. meta or documentation	

European Capacity Assessment

- Workshop held at EUMETSAT in January 2014 endorsed assessment concept and tools and assessed 30+ data records;
- Assessment:
 - Provides consistent view on strengths and weaknesses of the process to generate, preserve and improve CDRs to each individual CDR producer, agencies and EC;
 - Provides information to the user community on:
 - Status of individual records;
 - Collective state of all records;
 - Provides this information for the first time across different observing systems (satellite, in situ and reanalysis);
 - Increases transparency and openness towards the user;
 - Supports selection of CDRs for services and applications;
 - Supports Europe's contribution to the next Obs4Mips activity by providing consistent information on CDRs produced in Europe.

Support User's to Select Data

- User requirements collection exercises show a large variability in the stated requirements of users with nominally similar applications;
- But a core set of typical questions may always be isolated:

Conclusions

- EQC for Copernicus Climate Change Service (CCCS) needs to consider both scientific quality and process maturity;
- CCCS should support development of metrics for both;
- CCCS should support international data quality assessments collaborating with research organisations such as WCRP and Future Earth;
- CCCS should periodically assess process maturity for European data producers.

SPARE SLIDES

European Potential to Provide GCOS ECVs from Satellite

Atmosphere	Ocean		Ter	restrial	
Composition	Surface				
Aerosol Properties	Sea Surface Temper	rature	Lar	d Cover	
Methan & Long Lived GHGs	Sea Level		Fire	e Disturbance	
Ozone	Sea Ice		Soi	l Moisture	
Carbon Dioxide	Ocean Colour		Gla	cier and Ice Caps	
Precursors (for Aerosol & O3)	Sea State		Ice	Sheets	
Upper Air	Current		Sno	ow Cover	
Cloud Properties	Sea Surface Salinity	1	Alb	edo	
Temperature	Carbon Dioxide Par	tial Pressure	Lea	f Area Index	
Water Vapour	Phytoplankton		FAI	PAR	
Wind Speed and Direction	Ocean Acidity		Lak	æs	
Earth Radiation Budget	Sub Surface		Abo	ove Ground Bioma	SS
Surface	Carbon		Per	mafrost	
Surface Air Pressure	Current		Gro	ound Water	
Surface Air Temperature	Nutrients		Riv	er Discharge	
Surface Precipitation	Ocean Acidity		Soi	l Carbon	
Surface Radiation Budget	Oxygen		Lar	d Surface Temper	rature
Water Vapour (Surface Humidity)	Salinity				
Near-surface Wind Speed	Temperature				
	Tracers		EUMETSAT	CCI Starte	d CCI Scope
	Global Ocean Heat (Content			

Climate Model Evaluation Employing "Metrics"

- Questions motivating routine benchmarks for climate models
 - Are models improving?
 - Do some models consistently agree with observations better than others?
 - What do models simulate robustly, and what not?
- Related research drivers
 - How does skill in simulating observed climate relate to projection credibility?
 - Can we justify weighting model projections based on metrics of skill?
- Metrics
 - Metrics, as used in IPCC, are succinct and objective measures of the quality of a model simulation – usually a scalar quantity;
 - Quantify errors, usually *not* designed to diagnose reasons for model errors;
 - Skill in simulating things we have observed: "performance metrics;
 - Model reliability for application (e.g., "projection reliability metrics") How accurate are model projections of climate change?

Slide: Courtesy of Peter Gleckler, LLNL, USA

Core-Climax: System Maturity Matrix

Maturity	SOFTWARE READINESS	METADATA	USER DOCUMENTATION	UNCERTAINTY CHARACTERISATION	PUBLIC ACCESS, FEEDBACK, UPDATE	USAGE
1	Conceptual development	None	Limited scientific description of the methodology available from PI	None	Restricted availability from PI	None
2	Research grade code	Research grade	Comprehensive scientific description of the methodology, report on limited validation, and limited product user guide available from PI; paper on methodology is sumitted for peer-review	Standard uncertainty nomenclature is idenitified or defined; limited validation done; limited information on uncertainty available	Data avaliable from PI, feedback through scientific exchange, irregular updates by PI	Research: Benefits for applications identified DSS: Potential benefits identified
3	Research code with partially applied standards; code contains header and comments, and a README file; PI affirms portability, numerical reproducibility and no security problems	Standards defined or identified; sufficient to use and understand the data and extract discovery metadata	Score 2 + paper on methodology published; comprehensive validation report available from PI and a paper on validation is submitted; comprehensive user guide is available from PI; Limited description of operations concept available from PI	Score 2 + standard nomenclature applied; validation extended to full product data coverage, comprehensive information on uncertainty available; methods for automated monitoring defined	Data and documentation publically available from PI, feedback through scientifc exchange, irregular updates by PI	Research: Benefits for applications demonstrated. DSS: Use occuring and benefits emerging
4	Score 3 + draft software installation/user manual available; 3rd party affirms portability and numerical reproducibility; passes data providers security review	Score 3 + standards systematically applied; meets international standards for the data set; enhanced discovery metadata; limited location level metadata	Score 3 + comprehensive scientific description available from data provider; report on inter comparison available from PI; paper on validation published; user guide available from data provider; comprehensive description of operations concept available from PI	Score 3 + procedures to establish SI traceability are defined; (inter)comparison against corresponding CDRs (other methods, models, etc); quantitative estimates of uncertainty provided within the product characterising more or less uncertain data points; automated monitoring partially implemented	Data record and documentation available from data provider and under data provider's version control; Data provider establishes feedback mechanism; regular updates by PI	Score 3 + Research: Citations on product usage in occurring DSS: societal and economical benefits discussed
5	Score 4 + operational code following standards, actions to achieve full compliance are defined; software installation/user manual complete; 3rd party installs the code operationally	Score 4+ fully compliant with standards; complete discovery metadata; complete location level metadata	Score 4 + comprehensive scientific description maintained by data provider; report on data assessment results exists; user guide is regularly updated with updates on product and validation; description on practical implementation is available from data provider	Score 4 + SI traceability partly established; data provider participated in one inter-national data assessment; comprehensive validation of the quantitative uncertainty estimates; automated quality monitoring fully implemented (all production levels)	Score 4 + source code archived by Data Provider; feedback mechanism and international data quality assessment are considered in periodic data record updates by Data Provider	Score 4+ Research: product becomes reference for certain applications DSS: Societal and economic benefits are demonstrated
6	Score 5 + fully compliant with standards; Turnkey System	Score 5 + regularly updated	Score 5 + journal papers on product updates are and more comprehensive validation and validation of quantitative uncertainty estimates are published; operations concept regularly updated	Score 5 + SI traceability established; data provider participated in multiple inter-national data assessment and incorporating feedbacks into the product development cycle; temporal and spatial error covariance quantified; Automated monitoring in place with results fed back to other accessible information, e.g. meta data or documentation	Score 5 + source code available to the public and capability for continuous data provisions established (ICDR)	Score 5 + Research: Product and its applications becomes references in multiple research field DSS: Influence on decision and policy making demonstrated

Sub Matrix – Software Readiness

	SOFTWARE READINESS	METADATA	USER DOCUMENTATION	UNCE CHARAT	RTAINTY ERISATION	PUBLIC ACCESS, FEEDBACK, UPDATE	USAGE		
	Coding standards	5	Software Document	ation	Numerical	l Reproducibility and Portability	Security		
0	No coding standard or guidance or defined	e identified	No documentation	I	1	Not evaluated	Not evaluated		
2	Coding standard or guidance is i defined, but not applie	identified or ed	Minimal documentati	on	PI affirms ide	s reproducibility under ntical conditions	PI affirms no security problems		
8	Score 2 + standards are partia and some compliance results ar	Illy applied re available	Header and process desc (comments) in the code, I complete	ription README	PI affirms rep	roducibility and portability	Submitted for data provider's security review		
4	Score 3 + compliance is syste checked in all code, but not yet to the standards.	ematically t compliant	Score 3 + a draft Soft Installation/User Man	ware Jual	3rd party af	firms reproducibility and portability	Passes data provider's security review		
5	Score 4 + standards are syste applied in all code and comp systematically checked in all co not fully compliant to the sta Improvement actions to ach compliance are defined	 4 + standards are systematically ied in all code and compliance is atically checked in all code. Code is fully compliant to the standards. rovement actions to achieve full compliance are defined. Score 4 + enhanced process descriptions throughout the code; software installation/user manual complete 			Score 4 + 3rc	d party can install the code operationally	Continues to pass the data provider's review		
6	Score 5 + code is fully compl standards.	iant with	As in score 5		Score !	5 + Turnkey system	As in score 5		

Sub Matrix - Meta Data

	SOFTWARE READINESS	METADATA	USER DOCUMENTATION	UNCERTAINTY CHARATERISATION	PUBLIC ACCESS, FEEDBACK, UPDATE	USAGE						
	Stand	lards	Collect	ion level	File level							
0	No standard	considered	N	one	None							
2	No standard	considered	Lir	nited	Limited							
3	Metadata standard defined but not sys	s identified and/or tematically applied	Sufficient to use an independent of e Sufficient for data discovery metad repo	d understand the data external assistance; a provider to extract ata from meta data sitories	Sufficient to use and unders independent of external	tand the data assistance						
4	Score 3 + standards s at file level and colle provider. Meets interr the da	systematically applied ection level by data national standards for ataset	Score 3 + Enhance	d discovery metadata	Score 3 + Limited location (pixel, stat grid-point, etc.) level metadata							
5	Score 4 + meta data systematically checked	standard compliance d by the data provide	Score 4 + Complet	e discovery metadata tional standards	Score 4 + Complete location (pixel, station, grid-point, etc.) level metadata							
6	Scor	re 5	Score 5 + Re	gularly updated	Score 5							

Climate Data Record App

- User looking for data ...
 - Selects the ECV of interest
 - Selects the product features relevant to them
 - Can adjust their requirements (around guided sensible ranges) for themselves
- App then convolves requirements with product specification information in database
- User is presented with (say) 3 suggested datasets to consider, and their scores across their product feature requirements
- App also points to data, documentation, "product reviews" uploaded by earlier app users, and is further linked via CHARMe metadata

