
Working Group 1

Notes WG 1

• Goal to derive:
 joint community efforts
 ECMWF focus recommendations

I/O, Data Management and Scalability
• Trends and Pressure points

– 1.5x increase per year in storage; 1/3 from higher resolution, 2/3 from increased variety
– Moving to ensembles will help computational scaling but will mean more model data volume compared to

deterministic runs
– Volumes of satellite data will level off in ~10 years; model data will continue to increase
– Improvement in storage cost will continue to improve – Flash still benefiting from Moore’s law; tape is not

dead yet.
– Bandwidth to/from storage not scaling as fast as storage and WAN capacity
– Recommend organized effort to gather real data of data and I/O requirements and how they will scale

• Approaches for reducing data
– I/O server approaches improve model performance but data still goes to disk and storage
– Store model history at decreased resolution
– Store ensemble statistics (PDFs) instead of ens. output
– Temporal slicing/reduction ; how data is stored (as fields, currently)
– Compression
– Automate curation of data and experimental data

• Take processing for pre-/post-processing off critical path of forecast systems and stream between
applications. Only write to disk for fault tolerance

• On-the fly post processing, compression, analysis?
– If it can be done concurrent with (and not impede) critical path
– If the analysis tasks are known a-priori – for climate they usually are not
– Store v. recomputed? B.L.’s analysis showed recomputing is 1.67x more expensive than storage (for now)

Numerics and Scalability
• Application tuning

– Tuning of non-library application code over range of settings laborious and sometimes
not done at all. Autotuning frameworks.

– Unit testing and automated generation of unit tests from applications facilitates detaile
profiling for improving flop/s and flops/W (and better software in general

• Low level optimization not sufficient; must look at algorithms
– Parallel in Time for DA and models
– Need to revisit, find new algorithms that may have higher operation counts but more

locality and less data movement: Spectral Element, Disc. Galerkin, Finite Element
Methods

– Horiz. Explicit/Vert. Implicit (HEVI)
– Tridiagonal schemes in vertical do not vectorize

• Bit reproducibility may be sacrificed for fault tolerance (e.g. Fault Tolerant
Linear Solvers, Mark Hoemmen, Sandia NL)

• Libraries and Frameworks
– Algorithmic updates to models on a 10 year cycle; can reduce with modular design and

supporting infrastructure (e.g. OOPS) but time for testing and acceptance remains fixed
– PETSc & others – using these packages leverages these efforts and efforts of vendors

(NVIDIA, Cray, IBM) to tune for performance and scaling

Hardware/Compilers
• Hardware requirements and co-design dominated by

desktop, gaming, and laws of physics
• What can be done regarding power:

– User control of frequency, power saving modes, with improved
vendor supplied tools.

• Incomplete support across for OpenACC, Vectorization, and
CAF – affects performance portability

• Dynamic task parallelism. It’s available but need attn. to
load imbalance; research topic

• Memory/core and per node: new developments in memory
architectures, more information next year.

• OpenACC is here to stay; not clear about combination with
OpenMP

Benchmarking
• Metrics for CPU-accelerator comparisons

– Socket to socket
– Node to node (2 CPU vs. 1 CPU + 1 GPU)
– Power envelope
– Run time is bottom line

• Error resilience
– Capacity jobs (ensemble) are less of an issue. Loss of ensemble member is recoverable;

Mostly a capability issue.
– Users need to take more active role
– Fault-tolerant MPI for detection and handling of node failures at application level
– Checkpointing won’t scale (neither OS nor App level) but Flash memory may help.
– Detect bad patch at run time and just fill-in from neighbors
– Numerical algorithms that are fault tolerant.

• Code profiling
– Important to profile at scale

• Trade-off between productivity and performance
– People cheaper than power (“pasta cheaper than coal”)
– Investment in people versus the HPC budget

2. workflows
• Workflows:

– NWP and climate difference, shelf live longer for climate + time window not as constraint.
– Lack of focus on workflow so far
– Assimilation 80% is in the model
– Processing of observations
– Grib2 vs netcdf
– Exascale in time processing streaming data and processing it, existing project at ECMWF
– Projection is that observational data amount is increasing
– Not bottleneck at the moment to deal with observations, but remove from critical path
– Parallel in time for assimilation (helps by one order of magnitude) versus ensembles (increases data and I/O

problem) keep options open
– I/O bottleneck, 4dvar lower resolution models, link to point 7 how to test/benchmark
– Do we expect models continue to increase in resolution (general point)
– Issue with inner loop in assimilation
– Workflows: climate ?
– Hardwiring in NWP, more flexibility in data formats/definition of parameters, portability important for

research,
– Workflow automation system ? Area of collaboration ? Rose and silk , workflows are unique but tools may

be more commonly used, silk from New Zealand met office , ecflow and SMS from ECMWF, do not use file
I/O between tasks in workflow but pipeline and stream data unexplored terrain.

– Error resilience ?

General
• Share components:

– communicate what we do better, than there is more opportunity to share
– Dwarf implementations
– Workflow tools
– Dynamical core
– Strategies what works and what not
– Standards on software development
– Open source developments, even compilers ?
– Collection of software requirements from all weather centres to address vendors

believed to work
– Cray: Fortran to stay
– Fortran community shrinking ? Tools and compiler support problematic ?
– Library interfaces not necessarily in Fortran, no longer at university

4. Libraries

• Implicit solver, powerful parallel libraries available (PETSC,
DUNE) may solve this problem, but not for NEMO if grid
choice rigid ? Algebraic multigrid

• Preconditioning can be special but are supported in libraries
•

	Working Group 1
	Notes WG 1
	I/O, Data Management and Scalability
	Numerics and Scalability
	Hardware/Compilers
	Benchmarking
	2. workflows
	General
	Slide Number 9
	4. Libraries

