The use and usability of probabilistic forecasts
Emerging themes from an interdisciplinary study

Ana Lopez¹, Sophie Haines²
University of Oxford

Steve Rayner², Tim Palmer¹, Matt Spencer², Liz Stephens²,³

¹Atmospheric, Oceanic and Planetary Physics (Oxford), ²Institute for Science, Innovation & Society (Oxford)
³Geography and Environmental Science (Reading)
Oxford Martin Programme on Resource Stewardship (OMPORS)

• Sciences, social sciences & humanities

• Aims to deliver a framework, accountable to future generations, that will create actionable input on critical global issues

• Rethinking how we monitor, manage, maintain and allocate globally important resources

• Understandings of individual and collective behaviour and current institutional practice
Outline

• Motivation.

• Methodological approaches.

• Work in progress and preliminary findings.
Motivation

In the 90s USA:

- Water managers reluctant to use new probabilistic seasonal forecasts
- Cited poor reliability but did not demonstrate knowledge of forecast performance
- Institutional factors: regulations, reliability, infrastructure = disincentives to innovation
- Beyond rational choice models

“Weather forecasts are for wimps”

Has anything changed 15 years later?
- Forecasts’ skill has improved: does it make any difference?

Methodological approaches

Ethnographic approach: real-world situations in which forecasts are produced and interpreted, and resource decisions made

Quantitative science-led approach: do available forecasts meet performance requirements of the forecast user?

- Considering relative importance of technical and institutional factors
- Understanding practical processes of decision-making in probabilistic frameworks
- Exploring different ways that a forecast (or decision made from a forecast) can be more or less successful
 - What can we learn?
Case studies and qualitative approach

Case studies (public & private sector, NGOs)

- Modellers and forecasters
- Water resources & floods
- Public health
- Civil contingencies
- Finance & insurance
- Energy supply and demand
- Disaster risk reduction

Interviews and ethnography

- Organisational and individual goals, roles, decision-making
- Measures of success (formal/informal)
- Definitions of weather/climate sensitivities
- Accessing and using weather/climate information
Quantitative approach

Forecast’s attributes

- **Criteria**
 - Variables: temperature thresholds, precipitation amounts, wind speeds, etc.
 - Rationale: potential to cause damage, evidence based or experience, etc.

- **Probability of event**
 - Over a threshold
 - Deciles
 - Terciles

- **Lead times**
 - Early warnings and alerts: time to respond?
 - Planning

Understand how thresholds and lead times are chosen.
- Do they depend on the forecast quality? Is forecast value a criterium?
- If there was skill to change thresholds or lead times, would that affect the decision making?
Forecasts for Extreme Events

- NSWWS
- Flood Alerts
- PHE cold weather and heat wave alerts

Lead time
- Alerts < 24hs
- Warnings >24 hs
- Advice: up to 5 days
- 48 hs (cold-heat)
 Based on time to respond

Criteria
- Evidence based: epidemiological studies (temperature for heat wave)
- Potential to cause damage (wind, rain)
- Pragmatic (temperature for cold)

Probability
- > 60% for heat-cold
- Ranges for SWW alerts:
 < 20%, 20-40%, 40-60%, > 60%
 (forecaster decision)
 (before was only > 60%)
Monthly to seasonal forecast

- Climate outlook forums
- DRM

Lead time
- Time to plan
- Dictated by availability of information

Criteria
- No threshold, mostly for planning
- Based on available information

Probability
- Terciles:
 - Higher than normal
 - Average
 - Lower than average
Work in progress 1

Forecasts of extreme temperatures and impacts on health (PHE).

Forecast value/evaluation: skill of model output vs skill of alert-warning/how do we relate quality of model output (‘objective’ evaluation) with warning/alert (‘subjective’ evaluation)?

What’s the relevance of predefined met extremes for particular users/applications?
Forecasts for reservoir management (EA + water companies).

- Decision making potential of probabilistic forecasts for dynamic reservoir management.
- Potential use to improve long term performance (for climate change adaptation)

London Water Resources Zone model
What makes a ‘successful’ forecast?

- Defining forecasts and predicting impacts
- Linking forecast lead time/uncertainty and response
- Forecast quality and evaluation
 - ‘Forecast’ vs impact-based warnings
 - Reflexive uncertainty (Hulme & Dessai 2004)
 - False alarms vs missed events
 - Credibility, legitimacy, salience
 (Funtowicz & Ravetz 1993; Cash et al 2006)
What makes a successful forecast?

- Opportunities and constraints
 - Regulations and established practices, approaches to risk
 - Big (weather) events catalysing change
 - Forecasting partnerships (Haines & Stephens, forthcoming)
 - Development
 - Distance
 - Dialogue
Ongoing discussions

• Explore decision making approaches: how could they incorporate probabilistic forecasts?

• What are the variables of interest?

• What other information/knowledge is relevant?

• Find out about events/or organisational changes that facilitate/trigger incorporation of new scientific information into decision making

• Identify “appropriate” ways to use probabilistic forecasts, and examples of best practice
Thank you for listening.

Your questions, comments and feedback on any aspect of this research are appreciated.

To contact us:

Ana.lopez@univ.ox.ac.uk

Sophie.haines@insis.ox.ac.uk