Debugging in Heterogeneous Environments with TotalView

ECMWF HPC Workshop
30th October 2014
Agenda

- Introduction
- Challenges
- TotalView overview
- Advanced features
- Current work and future plans
Introduction
Rogue Wave

What we do

Rogue Wave helps organizations simplify complex software development, improve code quality, and shorten cycle times

- History
 - Founded: 1989
 - Portfolio company of Audax Group
 - Acquisitions:
 - Visual Numerics: 2009
 - TotalView Technologies: 2010
 - ILOG Visualization for C++ : 2012
 - OpenLogic : 2013
 - Klocwork : 2013
 - ILOG Visualization for Java: 2014

- Customers
 - 3,000+ in 57 countries
 - Financial services, telecoms, oil and gas, government and aerospace, research and academic

- Global Locations
 - HQ: Boulder, CO
 - NA: Houston, TX; Corvallis, OR; Natick MA
 - EMEA: France, Germany, UK
 - APAC: Japan
Challenges of developing for heterogeneous environments
Challenges

- Number of CPU cores increasing but clock speed is static or decreasing
- How to program accelerators
 - Lower level languages (OpenCL, CUDA)
 - Directives based (OpenACC, OpenMP)
- New algorithms or programming models may be needed
- Data sizes increasing exponentially
- Memory is increasingly important
- Power consumption and constraints
How does Rogue Wave help?

TotalView debugger

• Troubleshooting and analysis tool
 – Visibility into applications
 – Control over applications

• Scalability

• Usability

• Support for HPC platforms and languages
TotalView Overview
What is TotalView®?

Application Analysis and Debugging Tool: Code Confidently

- Debug and Analyse C/C++ and Fortran on Linux™, Unix or Mac OS X
- Laptops to supercomputers
- Makes developing, maintaining, and supporting critical apps easier and less risky

Major Features

- Easy to learn graphical user interface with data visualization
- Parallel Debugging
 - MPI, Pthreads, OpenMP™
 - CUDA™, OpenACC®, and Intel® Xeon Phi™ coprocessor
- Low tool overhead resource usage
- Includes a Remote Display Client which frees you to work from anywhere
- Memory Debugging with MemoryScape™
- Deterministic Replay Capability Included on Linux/x86-64
- Non-interactive Batch Debugging with TVScript and the CLI
- TTF & C++View to transform user defined objects

© 2014 Rogue Wave Software, Inc. All Rights Reserved
• **Runtime Memory Analysis : Eliminate Memory Errors**
 – Detects memory leaks *before* they are a problem
 – Explore heap memory usage with powerful analytical tools
 – Use for validation as part of a quality software development process

• **Major Features**
 – Included in TotalView, or Standalone
 – Detects
 • Malloc API misuse
 • Memory leaks
 • Buffer overflows
 – Supports
 • C, C++, Fortran
 • Linux, Unix, and Mac OS X
 • Intel® Xeon Phi™
 • MPI, pthreads, OMP, and remote apps
 – Low runtime overhead
 – Easy to use
 • Works with vendor libraries
 • No recompilation or instrumentation
Deterministic Replay Debugging

- Reverse Debugging: Radically simplify your debugging
 - Captures and Deterministically Replays Execution
 - Not just “checkpoint and restart”
 - Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
 - Step Back and Forward by Function, Line, or Instruction

- Specifications
 - A feature included in TotalView on Linux x86 and x86-64
 - No recompilation or instrumentation
 - Explore data and state in the past just like in a live process, including C++View transformations
 - Replay on Demand: enable it when you want it
 - Supports MPI on Ethernet, Infiniband, Cray XE Gemini
 - Supports Pthreads, and OpenMP
 - New: Save / Load Replay Information (CLI only)
• Survey conducted by the Judge Business School at Cambridge University concluded that Reverse Debuggers allow users, on average, to spend 13% less of their programming time debugging.
 – Programming was 50% of total work week on average
 – Debugging was 50% of programming time without reverse debugging
 – Debugging was 37% of programming time with reverse debugging
 – That frees up 130 hours (>3 work weeks, 6.5% total time) per developer per year for design and new feature development

• The survey looked at total value (salaries & overhead) of debugging as a task and they determined that this savings could, across the whole world economy, be work $41 billion in increased productivity.
 – The productivity improvement should be worth $2,500 per developer per year (salary only) or $5,000 per year with overhead.

TotalView for the NVIDIA® GPU Accelerator

- NVIDIA CUDA 6.5
 - With support for Unified Memory
- Features and capabilities include
 - Support for dynamic parallelism
 - Support for MPI based clusters and multi-card configurations
 - Flexible Display and Navigation on the CUDA device
 - Physical (device, SM, Warp, Lane)
 - Logical (Grid, Block) tuples
 - CUDA device window reveals what is running where
 - Support for types and separate memory address spaces
 - Leverages CUDA memcheck
Displaying NVIDIA GPU Device Information
TotalView for OpenACC

- Step host & device
- View variables
- Set breakpoints

Compatibility with Cray CCE 8 OpenACC
Supports All Major Intel Xeon Phi Coprocessor Configurations
- Native Mode
 - With or without MPI
- Offload Directives
 - Incremental adoption, similar to GPU
- Symmetric Mode
 - Host and Coprocessor
- Multi-device, Multi-node
- Clusters

User Interface
- MPI Debugging Features
 - Process Control, View Across, Shared Breakpoints
- Heterogeneous Debugging
 - Debug Both Xeon and Intel Xeon Phi Processes

Memory Debugging
- Both native and symmetric mode
Spectrum of Intel Xeon Phi Execution Models

CPU-Centric

- General purpose serial and parallel computing
 - Main()
 - Foo()
 - MPI_*()

Intel® Xeon Phi-Centric

- Codes with highly-parallel phases
 - Main()
 - Foo()
 - MPI_*()

- Codes with balanced needs
 - Main()
 - Foo()
 - MPI_*()

- Highly-parallel codes
 - Main()
 - Foo()
 - MPI_*()

Productive Programming Models Across the Spectrum
Debugging Intel Xeon Phi Applications with Offloaded Code

One debugging session for MIC-accelerated code
Debugging Intel Xeon Phi MPI Applications

- Start multi-host multi-card MPI job
- Attach to subset of processes on MIC coprocessor
- Set breakpoints
- Debug “as usual” MPI
Coarray Fortran

Diving on CAF array y

Supported on Cray platforms with CCE
Advanced Features
Remote Display Client

• Offers users the ability to easily set up and operate a TotalView debug session that is running on another system

• Consists of two components
 • Client – runs on local machine
 • Server – runs on any system supported by TotalView and “invisibly” manages the secure connection between host and client

• Remote Display Client is available for:
 • Linux x86, x86-64
 • Windows XP, Vista, 7
 • Mac OS X
Multi-dimensional array viewer

- See your arrays on a Grid display
- 2-D, 3-D, … N-D
- Arbitrary slices
- Specify data representation
- Windowed data access – Fast
Visualizing Arrays

- Visualize array data using Tools > Visualize from the Variable Window
- Large arrays can be sliced down to a reasonable size first
- Visualize is a standalone program
- Data can be piped out to other visualization tools

- Visualize allows to spin, zoom, etc.
- Data is not updated with Variable Window; You must revisualize
- $\text{visualize}()$ is a directive in the expression system, and can be used in evaluation point expressions.
Debugging MPMD applications

```
totalview -args aprun -n 9 worker : -n 1 master
```

![Debugging MPMD applications](image)
Message Queue Debugging

- Filtering
 - Tags
 - MPI Communicators
- Cycle detection
 - Find deadlocks
• Gives you non-interactive access to TotalView’s capabilities
• Useful for
 – Debugging in batch environments
 – Watching for intermittent faults
 – Parametric studies
 – Automated testing and validation
• TVScript is a script (not a scripting language)
 – It runs your program to completion and performs debugger actions on it as you request
 – Results are written to an output file
 – No GUI
 – No interactive command line prompt
• Used at sites such as DMI and STFC Daresbury for automated comparative debugging
C++View

- C++View is a simple way for you to define type transformations
 - Simplify complex data
 - Aggregate and summarize
 - Check validity

- Transforms
 - Type-based
 - Compose-able
 - Automatically visible

- Code
 - C++
 - Easy to write
 - Resides in target
 - Only called by TotalView
VIEWING FORTRAN USER-DEFINED TYPES

TYPE WHOPPER

 LOGICAL, DIMENSION(ISIZE) :: FLAGS
 DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA
 DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA

END TYPE WHOPPER

TYPE(WHOPPER), DIMENSION(:,), ALLOCATABLE :: STUFTYP1
Current Work and Future Plans
What is new in TotalView 8.14.1

- CUDA 6.5 support
- Coarray Fortran support for the Cray CCE compiler
- Extended support for type transformations with the Intel compiler (unordered STL collection classes)
- Improved delayed symbol processing (better performance for larger executables)
Multi-phase R&D Projects Underway

• Massive Scalability
 – Collaboration with LLNL and Tri-lab partners
 – Targeting Cray, Blue Gene and Linux Clusters
 – MRNet software overlay network for multicast and reduction

• New GUI
 – Sleek, Modern and Fast
 – Configurable
 – Improved Usability
 – Provides aggregation capabilities for big data and scale
 – Leveraging math and stat expertise from IMSL

• Working with customers through early access programs
 – Customer input is key to the success of both programs
Thanks!

- Visit the website
 - Videos (3 new videos on Xeon Phi)
 - Documentation
 - Sign up for an evaluation

- Visit us at SC14 (booth 2338)