
Preparation of IFS physics for future architectures
Sami Saarinen (CSC – IT Center for Science Ltd, Finland)
Deborah Salmond & Richard Forbes (ECMWF)
Oct 27-31, 2014 for ECMWF HPC workshop

Outline

Adaptation of IFS physics cloud scheme
(CLOUDSC) to new architectures as part of
ECMWF scalability programme

Emphasis on GPU-migration by use of
OpenACC directives

Comparisons against Intel XeonPhi (MIC) and
Intel Xeon/Haswell

CLOUDSC problem setup
Given single MPI-task’s worth of grid point
columns (NGPTOT ~ 40,000) @ T2047 L 137
(~10km) Forecast (~ 10% of total wall clock time)
– Divided into column blocks (max block size = NPROMA)
– Each grid point column is independent of each other

Only vertical dependency counts

– Sweep over column blocks, each calling CLOUDSC
Lots of natural multi- & manycore-parallelism with OpenMP

Aiming at a single source code for CLOUDSC on
CPUs/MICs (OpenMP) and on GPUs (OpenACC)
– Performance check against original/old CLOUDSC

Driver code for CLOUDSC with OpenMP
!$OMP PARALLEL PRIVATE(JKGLO,IBL,ICEND)
!$OMP DO SCHEDULE(DYNAMIC,1)

DO JKGLO=1,NGPTOT,NPROMA ! So called NPROMA-loop
IBL=(JKGLO-1)/NPROMA+1 ! Current block number
ICEND=MIN(NPROMA,NGPTOT-JKGLO+1) ! Block length <= NPROMA

CALL CLOUDSC (1, ICEND, NPROMA, KLEV, &
& array(1,1,IBL), & ! ~ 65 arrays like this
)

END DO

!$OMP END DO
!$OMP END PARALLEL

Typical values for
NPROMA in OpenMP

implementation:
24 – 64

NGPTOT per MPI-
task ~ 40,000 on

T2047 L 137 ~10km

Development of OpenACC/GPU-version

The driver-code with OpenMP-loop kept ~ intact
– OpenACC (in most cases) can co-exist with OpenMP

CLOUDSC (~3,500 lines of Fortran2004) was pre-
processed through ”acc_insert” Perl-script
– Automatic creation of ACC KERNELS and ACC DATA

PRESENT / CREATE clauses to CLOUDSC
With an effort of “one long working day” and
use of profiling tool ”nvprof” the GPU-compute
time came down from original 40s to 0,24s on a
single nVIDIA K40 (using PGI 14.7 compiler)

Driving CLOUDSC with OpenACC
!$OMP PARALLEL PRIVATE(JKGLO,IBL,ICEND) &
!$OMP& PRIVATE(tid, idgpu) num_threads(NumGPUs)
tid = omp_get_thread_num() ! OpenMP thread number
idgpu = mod(tid, NumGPUs) ! Effective GPU# for this thread
CALL acc_set_device_num(idgpu, acc_get_device_type())
!$OMP DO SCHEDULE(STATIC)

DO JKGLO=1,NGPTOT,NPROMA ! NPROMA-loop
IBL=(JKGLO-1)/NPROMA+1 ! Current block number
ICEND=MIN(NPROMA,NGPTOT-JKGLO+1) ! Block length <= NPROMA
!$acc data copyout(array(:,:,IBL), ...) & ! ~22 : GPU to Host
!$acc& copyin(array(:,:,IBL)) ! ~43 : Host to GPU

CALL CLOUDSC (... array(1,1,IBL) ...) ! Runs on GPU#<idgpu>

!$acc end data
END DO

!$OMP END DO
!$OMP END PARALLEL

Typical values for
NPROMA in OpenACC

implementation:
> 10,000

Typical values for
NPROMA in OpenACC

implementation:
> 10,000

Some initial results

HsW 2.3GHz OMP#36

SnB 2.7GHz OMP#16

MIC -- old CLOUDSC

MIC 1.24GHz omp#244

HsW 2.3GHz
OMP#36

SnB 2.7GHz
OMP#16

MIC -- old
CLOUDSC

MIC 1.24GHz
omp#244

Time (s) 0,28 0,51 0,67 0,89

CLOUDSC: Xeon & XeonPhi (MIC) – Intel compilers

Smaller the
better !

Note:
ORIGINAL
CLOUDSC

HsW -- old CLOUDSC

Haswell 2.3GHz OMP#36

Bull K40, 2 GPUs -- PGI 14.7

Bull K40 -- PGI 14.7

Cray K20x -- PGI 14.7

HsW -- old
CLOUDSC

Haswell
2.3GHz

OMP#36

Bull K40, 2
GPUs -- PGI

14.7

Bull K40 --
PGI 14.7

Cray K20x --
PGI 14.7

Time (s) 0,33 0,28 0,15 0,24 0,28

CLOUDSC (acc kernels) : GPU compute time only

Smaller the
better !

ORIGINAL
CLOUDSC

Hybrid version : CPU-cores + GPU(s) ?

Since CPU/MIC versions favour rather small block
size NPROMA and GPUs prefer it to be as large as
possible leads to some unexpected problems:
– A hybrid version, where all CPUs and GPUs on a node will

be utilized, cannot realistically be run due to contradictory
requirements for optimal choice of NPROMA

For now : use MPI-tasks to separate CPU blocks from GPUs
– Large NPROMA requirement on GPUs also make memory

reservation on the Host-side pretty high, e.g. at L 137 :
Just CLOUDSC requires ~ NPROMA / 10,000 GBytes of STACK

Obstacles with OpenACC
Only 2 compilers available at present
– PGI favours ACC KERNELS
– CRAY/CCE favours ACC PARALLEL

Performance cross-difference can be > 10X !!
Potential need to maintain 2 CLOUDSC versions
– Or 3 when considering the old CLOUDSC better on MICs

The 2 compilers also introduce different levels
of overheads in ACC DATA mapping the i.e. the
way to build Host & GPU data relationships
– Shouldn’t these even out when these compilers mature ?

1% of CLOUDSC (acc kernels) [PGI]
!$ACC KERNELS LOOP COLLAPSE(2) PRIVATE(ZTMP_Q,ZTMP)

DO JK=1,KLEV
DO JL=KIDIA,KFDIA

ztmp_q = 0.0_JPRB
ztmp = 0.0_JPRB
!$ACC LOOP PRIVATE(ZQADJ) REDUCTION(+:ZTMP_Q) REDUCTION(+:ZTMP)
DO JM=1,NCLV-1

IF (ZQX(JL,JK,JM)<RLMIN) THEN
ZLNEG(JL,JK,JM) = ZLNEG(JL,JK,JM)+ZQX(JL,JK,JM)
ZQADJ = ZQX(JL,JK,JM)*ZQTMST
ztmp_q = ztmp_q + ZQADJ
ztmp = ztmp + ZQX(JL,JK,JM)
ZQX(JL,JK,JM) = 0.0_JPRB

ENDIF
ENDDO
PSTATE_q_loc(JL,JK) = PSTATE_q_loc(JL,JK) + ztmp_q
ZQX(JL,JK,NCLDQV) = ZQX(JL,JK,NCLDQV) + ztmp

ENDDO
ENDDO

!$ACC END KERNELS LOOP

1% of CLOUDSC (acc parallel) [CCE]
!$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(ZQADJ,ZTMP_Q,ZTMP)PRIVATE(ZQADJ,ZTMP_Q,ZTMP)

DO JK=1,KLEV
DO JL=KIDIA,KFDIA

ztmp_q = 0.0_JPRB
ztmp = 0.0_JPRB

! !$ACC LOOP PRIVATE(ZQADJ) REDUCTION(+:ZTMP_Q) REDUCTION(+:ZTMP)
DO JM=1,NCLV-1

IF (ZQX(JL,JK,JM)<RLMIN) THEN
ZLNEG(JL,JK,JM) = ZLNEG(JL,JK,JM)+ZQX(JL,JK,JM)
ZQADJ = ZQX(JL,JK,JM)*ZQTMST
ztmp_q = ztmp_q + ZQADJ
ztmp = ztmp + ZQX(JL,JK,JM)
ZQX(JL,JK,JM) = 0.0_JPRB

ENDIF
ENDDO
PSTATE_q_loc(JL,JK) = PSTATE_q_loc(JL,JK) + ztmp_q
ZQX(JL,JK,NCLDQV) = ZQX(JL,JK,NCLDQV) + ztmp

ENDDO
ENDDO

!$ACC END PARALLEL LOOP

OpenACC compilers :

nVIDIA / PGI

Runs on all nVIDIA GPU-
platforms, also Cray
Often better performance
with ACC KERNELS
ACC DATA CREATE and
ACC array PRESENT
testing introduced
relatively large overheads
Host memory pinning for
GPU transfers seemed to
create large overheads

Cray / CCE
Available only on Cray
Favours ACC PARALLEL
loops, thus potentially two
OpenACC versions
required (CCE not available
on non-Cray GPU-platforms)
ACC DATA CREATE and
ACC PRESENT testing as
well as memory pinning
seemed not to cause big
overheads compared PGI

Some results with GPU overheads

Haswell 2.3GHz OMP#36

Bull K40, 2 GPUs -- PGI 14.7

Bull K40 -- PGI 14.7

Cray K20x -- PGI 14.7

Haswell 2.3GHz
OMP#36

Bull K40, 2 GPUs
-- PGI 14.7

Bull K40 -- PGI
14.7

Cray K20x -- PGI
14.7

Time (s) 0,28 0,15 0,24 0,28
Xfer (s) 0,28 0,28 0,53
Ovhd (s) 0,48 1,1 0,62

CLOUDSC (acc kernels) : GPU times with overheads

OpenACC (?)
overheads

Data transfer

GPU-compute time

Next steps
Preliminary GPU migration of CLOUDSC has
shown that code sharing with conventional CPUs is
indeed possible with OpenACC – despite PGI &
CCE compiler differences
GPU migration can also discover more parallelism
as some parts of the code gets looked into more
thoroughly
– Often with improved CPU performance, too

Full ECMWF/IFS physics needs to be analyzed with
most of the arrays residing permanently on GPUs,
and with time stepping included
Also remember: Intel KNL (Knights Landing) ~ 2016

Some conclusions

IFS physics currently favours OpenMP way of
coding and runs brilliantly on Intel Xeon (even on
“MIC” type of systems, when MPI is not disturbing)
OpenACC version on GPUs requires extraordinary
large NPROMA, but then even a single K40 GPU
“beats” a full node Intel Xeon/Haswell hands down
(when not counting overheads & data transfers)
OpenACC needs to mature : exactly the two
available compilers (PGI & CCE) require exactly
two different coding styles (dilemma as a result of
ACC KERNELS vs. ACC PARALLEL approaches)

Dropped out from this presentation

OpenMP 4.0 accelerator directives
– Presently a major waste of HPC programmers’ time

On Cray/CCE CLOUDSC/OpenACC migration :
– Still need to understand a number of discrepancies over

seemingly more robust looking PGI compiler
– ACC PARALLEL vs. ACC KERNELS is haunting us
– Note: Cray/CCE CPU-performance often superb

Sub-columning technique, where each grid
point column is replicated (say) by 9X :
– Effective NGPTOT ~ 360,000 fits an runs well on

32GB Intel Xeon CPU-servers
– Runs OK on K20X / K40 GPU systems with OpenACC
– Does NOT FIT into current generation XeonPhi MICs

A special thanks to

Dr. Peter Messmer (nVIDIA) for invaluable
suggestions – and keeping PGI compiler
developers busy

Dr. Alistair Hart (Cray) for getting a version of
CLOUDSC working with Cray/CCE OpenACC

And Cray Inc. for providing very easy access to
their Swan development resource in US

