The coupled ocean-atmosphere model at ECMWF: overview and technical challenges

Kristian S. Mogensen Marine Prediction Section ECMWF

Slide 1

Overview of talk:

- Baseline:
 - The focus of this talk is going to be on coupling of IFS and WAM to NEMO
 - The IFS to WAM coupling is old news
- Motivation:
 - Why do we need to couple the ocean to the atmosphere in the first place?
 - A brief history of coupled model setup at ECMWF
 - Technologies used for coupling in the past
- The current coupled model based on IFS-WAM-NEMO:
 - How does it work and especially how do we glue the IFS+WAM together with the NEMO model.
 - Scalability of the coupled model
- Technical challenges:
 - Communicating fields between grids
 - Initialization of the coupled system
- Conclusions and outlook

Slide 2

Motivation for coupled modelling.

© ECMWF

Why do we need to couple an ocean model to our atmosphere model?

- The ocean is the lower boundary for atmosphere for a large part of the earth
- Accurately modelling this lower boundary should give feedback to the atmosphere
- For long range predictions like seasonal forecasting and monthly forecasting this is very important
 - ENSO
- For medium range forecasting the ocean state (including sea-ice) can change on a daily time scale
 - Ice modelling
 - Hurricane feedback to/from the ocean
- Today we use a coupled model for the following systems:

- The ensemble prediction system (ENS) from day 0 to 15 and the monthly extension to day 32 twice per week
- The seasonal forecasting system

Future medium range applications of a coupled model: Hurricanes

A short history of coupled ocean-atmosphere modelling at ECMWF.

- IFS coupled to HOPE (from around 1997).
 - OASIS2 based on coupling via files/pipes
 - Seasonal: System 1 to 3
 - Monthly forecasting
 - Originally separate system
 - Became part of VarEPS (now ENS) coupled in leg B (day 10 to 15) and leg C (beyond day 15) in March 2008
- IFS coupled to NEMO (from November 2011)
 - OASIS3 based on coupled via MPI using MPMD execution
 - Seasonal system 4 + VarEPS/ENS
- IFS coupled to NEMO in a single executable (from November 2013 in ENS).
 - No external coupler
 - Coupling between the WAM component and NEMO
 - ENS system coupled in all 3 legs (coupling from day 0)

The current and future coupled system

© ECMWF

Current coupled system:

- Design principle: the atmosphere and wave models don't know anything about the inner workings of NEMO
 - The coupling layer have access to all NEMO F90 modules (*e.g.* data), but only accepts data from IFS/WAM as arguments
 - Coupling fields to/from NEMO is passed as subroutine arguments to this layer in IFS/WAM
 - Grid information from IFS/WAM needs to passed as arguments as well
- All regridding is done within the interface layer:
 - Interpolation weights are computed outside the model and read from a file
 - The interpolation is done in parallel with minimum source field information communicated to the individual MPI tasks
 - If destination points *a* and *b* on task *N* both needing source point *c* from task *M* then it is only sent to task *N* once
- Model version:
 - NEMO version 3.4.1 (with LIM2)
 - Initially in CY40R1 of the IFS and updated with each IFS cycle.

© ECMWF

Slide 8

Schematic overview of coupled system without the LIM2 ice model

Extract of source code for the coupled model on the IFS side: Control interface

```
IF (LNEMOCOUP) CALL ININEMO
DO JSTEP=NSTAR2, ISTOP
  <<BORING ATMOSPHERE STUFF>>
 IF (LLWVTIME) THEN
   CALL WVCOUPLE (TSTEP, NSTPW, LLSTOP, LLWRRW)
  ENDIF
  IF (NFRCO /= 0 .AND. LNEMOCOUP .AND. LMCC04) THEN
    IF(MOD(NSTEP, NFRCO) == 0) THEN
      IF (LWCOU) THEN
        CALL UPDNEMOFIELDS(LWSTOKES)
        CALL UPDNEMOSTRESS
      ENDIF
      CALL COUPLNEMO(NSTEP)
    ENDIF
  ENDIF
ENDDO
```


Extract of source code for the coupled model on the IFS side: Coupling and running of NEMO

- How data to NEMO is transferred, the NEMO time-stepped and fields received with the IFS
 - Interface routines are in blue

- In NEMOGCMCOUP_UPDATE the data are regridding and relevant variables in NEMO updated
- The routine NEMOGCMCOUP_STEP basically just call the standard NEMO time step routine
- In NEMOGCMCOUP_GET the NEMO fields are regridded nto the arguments variable

Scalability of the coupled model.

- Scalability runs for a 10 day period of
 - ENS resolution (T639_L91 or around 31 km)
 - The ocean and atmosphere is about equal in cost
 - Up to 1200 cores tested
 - HRES resolution (T1279_L137 or around 15 km)
 - The ocean is cheap compared to the atmosphere
 - Up to 3600 cores tested
- All run was done on the production Cray XC-30 systems at ECMWF means interference from other running jobs on file system load *etc*
 - Initialization is ignored (but I will get back to that later)
 - No output, but normal input
- Coupling overhead were investigated by changing the frequency of coupling
 - This changes the solution, but frequent coupling is a goal

© ECMWF

This was done without the ice model for reasons explained later

Scalability of the coupled model at ENS resolutions

Effect of coupling frequency: No measureable slowdown.

Scalability of the coupled model at HRES resolutions

Still no real slowdown

Scalability observations

- The coupled model scale reasonable well, but there are room for improvements (as always)
 - In principle we could implement a coupled HRES system today (in terms of run times only)
- Very little overhead in the actual coupling on a production system
 - More frequent coupling should be more expensive
 - A dedicated system might reveal some difference
- High frequent coupled current means calling the ice model more frequent since it is called at every coupling step
 - Makes physical sense since the forcing fields of the ice model are updated
 - But at an added cost

Challenges for our coupled model

1. Grids don't overlap

2. Initialization of the coupling

Challenges 1.1: The grids of the model components are different and have different parallel decomposition

© ECMWF

- Top left Gaussian N128 reduced atmosphere grid
- Top right ORCA1 ocean grid
- Bottom left 1.0 degree reduced wave grid
- 16 domains for all grids

Slide 19

Challenges 1.2: communication patterns.

- Grids from previous slide
- 16 point stencil used in interpolation
- Little overlap of areas means all interpolations needs communication
- Short messages of the order of Kbytes
- Packing all fields together could be done to decrease the number of exchanges
 - Especially important when coupling with the LIM ice model
- WAM toA solution could be to reshuffledomains in NEMO, but that wouldrequire changes to the halo exchange

Slide 20

Challenges 1.3: T1279+global025 to ORCA025

© ECMWF

Slide 21

Challenges 2.1: Initialization of the coupled model first version.

• The first time steps of the T1279I_2_Z137 coupled to ORCA025_Z75 on 1200 MPI tasks with 6 threads/tasks.

								S-NEN	IU coublind
15:01:00	000000000	CNT3	- x	999	23.23	23.23	5.18	0:14	0:23 0.0000000000000E+00
15:09:41	A00000000	STEPO		0	2864.78	2864.78	526.60	47:59	9:09 0 28922730264112E-04
15:09:41	000000AA0	STEPO		0	0.01	0.01	0.00	47:59	9:00 J.28922730264112E-04
15:09:42	0AAA00AAA	STEPO		0	0.54	0.54	0.18	48:00	9:09 0.28922730264112E-04
15:09:44	0AAA00AAA	STEPO		1	12.84	12.84	2.64	48:12	.29212296020822E-04
15:13:54	0AAA00AAA	STEPO		2	1366.70	1366.70	249.75	70:59	(13:22)29499942932315E-04
15:14:33	0AAA00AAA	STEPO		3	210.28	210.28	39.09	74:29	14.01 0.29853445010196E-04
15:14:34	0AAA00AAA	STEPO		4	8.01	8.01	1.3	orat 3 in	4:02 0+30255426223388E 4
15:14:37	0AAA00AAA	STEPO		5	13.09	13.09	2.21	74.50	14:04 0.30412908653708E-04
15:14:38	A00000000	STEPO		6	7.75	7.75	1.30	74;58	-14:06-0.30631624190308E-04
15:14:38	000000AA0	STEPO		б	0.00	0.00	0.0	A74.58 N	
15:14:38	0AAA00AAA	STEPO		б	0.98	0.98	0.17	74:59	14:06 0.30631624190308E-04
15:14:41	0AAA00AAA	STEPO		7	18.06	18.06	3.03	75:17	14:09 0.30818912985184E-04
15:14:42	0AAA00AAA	STEPO		8	7.60	7.60	1.28	75:25	14:10 0.30984119227123E-04
15:14:45	0AAA00AAA	STEPO		9	12.32	12.32	2.07	75 : 37	14:12 0.31135002405381E-04
15:14:46	0AAA00AAA	STEPO		10	7.60	7.60	1.28	75:45	14:14 0.31274700232161E-04
15:14:48	0AAA00AAA	STEPO		11	11.92	11.92	2.01	75 : 57	14:16 0.31406548637423E-04
15:14:49	A00000000	STEPO		12	7.76	7.76	1.31	76:04	14:17 0.31532197346928E-04
15:14:49	000000AA0	STEPO		12	0.00	0.00	0.00	76:04	14:17 0.31532197346928E-04
15:14:49	0AAA00AAA	STEPO		12	0.94	0.94	0.16	76:05	14:17 0.31532197346928E-04

 For a 60 minutes operational deadline for a 10 day forecast we can not afford to spend 13 min initializing the model

Challenges 2.2: Initialization of the coupled model second version.

• Initial run. Writing of redistribution information:

14:40:03	000000000	CNT3	-999	34.86	34.86	7.00	0:07	0:21 0.000000000000E+00
14:47:42	A00000000	STEPO	0	2580.85	2580.85	465.48	43:08	8:06 0 28922730264112E-04
14:47:42	0AA000000	STEPO	0	0.00	0.00	0.00	43:08	0.000.28922730264112E-04
14:47:42	FULLPOS-B	DYNFPOS	0	0.54	0.54	0.12	43:09	8:06 0.28922730264112E-04
14:47:44	FULLPOS-S	DYNFPOS	0	9.15	9.15	1.80	Similar	8:17 0.28922730264112E-04
14:47:53	0AAA00AAA	STEPO	0	47.81	47.81	9.46	44:06	8:17 0.28922730264112E-04
14:47:56	0AAA00AAA	STEPO	1	14.24	14.24	2.61	44:20	8:20 2.29211277546594E-04
14:51:18	0AAA00AAA	STEPO	2	1117.01	1117.01	201.80	62:57	11:42 .29492720992204E-04
14:51:44	0AAA00AAA	STEPO	3	147.58	147.58	26.49	65:24	12:08 0.29839437592746E-04
14:51:46	0AAA00AAA	STEPO	4	7.80	7.80	1.33	65:32	12:10 0.30137062692285E-04

• Subsequent runs. Reading of redistribution information:

15:03:52	000000000	CNT3	-999	17.99	17.99	6.00	0:13	0:21 0.000000000000E+00
15:05:55	A00000000	STEPO	0	683.55	683.55	129.06	11:37	2:30 0 28922730264112E-04
15:05:56	000000AA0	STEPO	0	0.14	0.14	0.03	11:37	2·20 J.28922730264112E-04
15:05:56	FULLPOS-B	DYNFPOS	0	0.66	0.66	R .44	11 38	$te^{2:30}_{33}$ $b^{28922730264112E-04}_{2:30}$ $b^{28922730264112E-04}_{110}$
15:05:59	FULLPOS-S	DYNFPOS	0	15.62	15.62			
15:06:08	0AAA00AAA	STEPO	0	44.48	44.48	8.80	12:38	2:42 0.28922730264112E-04
15:06:10	0AAA00AAA	STEPO	1	14.20	14.20	2.66	12:52	z.+. 0.29211277546594E-04
15:06:26	0AAA00AAA	STEPO	2	88.68	88.68	15.97	14:21	3:01 0.29492720992204E-04
15:06:54	0AAA00AAA	STEPO	3	152.06	152.06	27.32	16:53	3.28 0.29839437592746E-04
15:06:55	0AAA00AAA	STEPO	4	7.96	7.96	1.37	17:01	3:29 0.30137062692285E-04

• Initialization of NEMO is an issue also in NEMO standalone.

Conclusions and outlook

- The single executable coupled model works reasonable well for the current operational resolutions
 - As always: improvements are possible
- With our setup the coupled model almost don't feel like a coupled model
 - No fundamental technical difference between calling the atmospheric physics and the ocean model (besides the regridding)
- It have been used for ensemble medium range forecasting (ENS) for close to a year now with a low resolution (1 degree) configuration
 - Some forecasts seems to having benefitted from the coupling, but some problems has also been highlighted
- Work on integrating the coupled model in other systems has been done or is ongoing
 - Weakly coupled data assimilation prototype has developed in the context for reanalysis
 - More work on high resolution coupled modeling will be done in the near future

1279I_2 ORCA025_Z75 1h Rain + MSLP + 10mW 24/10 2012 + 3

Slide 25