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Introduction

Data assimilation calls for algorithms that often
approximate the Extended Kalman Filter, or EKF, that itself
is too heavy to run
It is essential, but quite non-trivial, that the approximate
Kalman filters used remain stable over the assimilation
period.

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters



Introduction
Ensemble Kalman Filtering Methods

The Variational Ensemble Kalman Filter (VEnKF)
Stability and Trajectory Shadowing

Computational Results
Observation density and ensemble spread

Conclusions

Introduction

Stability of a filter is related to the numerical stability of the
corresponding algorithm, but numerical stability alone does
not guarantee filter stability.
It is also mandatory that the filter does not diverge from the
true state of the system.
Yet all filters applied to nonlinear models will diverge if
there are no observations.
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Introduction

We study the general conditions for filter stability applicable
to variational methods, and approximate Kalman filters
many kinds ;
Present several ways to stabilize filters;
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Introduction

Provide empirical results with a shallow-water model that
illustrate a relation between ensemble spread and
temporal and spatial density of observations that
Generalizes the well-known Courant-Friedrichs-Lewy
numerical stability condition to filter stability in a Hilbert
space setting; and
Explain the impact of model bias on filter stability in this
context.
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The Extended Kalman Filter (EKF)

Algorithm
Iterate in time

xf (ti) = M(ti , ti−1)(xa(ti−1))

Pf
i = MiPa(ti−1)MT

i + Q

Ki = Pf (ti)HT
i (HiPf (ti)HT

i + R)−1

xa(ti) = xf (ti) + Ki(yo
i − H(xf (ti)))

Pa(ti) = Pf (ti)− KiHiPf (ti)
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The Extended Kalman Filter (EKF)

Where

xf (ti) is the prediction at time ti
xa(ti) is the analysis at time ti
Pf (ti) is the prediction error covariance matrix at time ti
Pa(ti) is the analysis error covariance matrix at time ti
Q is the model error covariance matrix
Ki is the Kalman gain matrix at time ti
R is the observation error covariance matrix
H is the nonlinear observation operator
Hi is the linearized observation operator at time ti
Mi is the linearized weather model at time tiIdrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters
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The Extended Kalman Filter (EKF)
Ensemble Kalman Filters (EnKF)

The Extended Kalman Filter (EKF)

Properties
The model is not assumed to be perfect
Model integrations are carried out forward in time with the
nonlinear model for the state estimate and
Forward and backward in time with the tangent linear
model and the adjoint model, respectively, for updating the
prediction error covariance matrix
There is no minimization, just matrix products and
inversions
Computational cost of EKF is prohibitive, because Pf (ti)
and Pa(ti) are huge full matrices
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Ensemble Kalman Filters (EnKF)

Properties
Ensemble Kalman Filters are generally simpler to program
than variational assimilation methods or EKF, because
EnKF codes are based on just the non-linear model and do
not require tangent linear or adjoint codes, but they
Tend to suffer from slow convergence and therefore
inaccurate analyses because ensemble size is small
compared to model dimension
Often underestimate analysis error covariance
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Ensemble Kalman Filters (EnKF)

Properties
Ensemble Kalman filters often base analysis error
covariance on bred vectors, i.e. the difference between
ensemble members and the background, or the ensemble
mean
One family of EnKF methods is based on perturbed
observations, while
Another family uses explicit linear transforms to build up
the ensemble
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The Extended Kalman Filter (EKF)
Ensemble Kalman Filters (EnKF)

EnKF Cost functions

Algorithm
Minimize

(Pf (ti))−1 = (βB0 + (1− β)
1
N

Xf (ti)Xf (ti)T)−1

Algorithm
Minimize

`(xa(ti)|yo
i )

= (yo
i −H(xa(ti)))TR−1(yo

i −H(xa(ti)))

+
1
N

N∑
j=1

(xf
j (ti)−xa(ti))T(Pf (ti))−1(xf

j (ti)−xa(ti))
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The Variational Ensemble Kalman Filter (VEnKF)

Algorithm
Iterate in time

Step 0: Select a state xa(t0) and a covariance Pa(t0) and
set i = 1

Step 1: Evolve the state and the prior covariance estimate:
(i) Compute xf (ti) = M(ti , ti−1)(xa(ti−1));
(ii) Compute the ensemble forecast
Xf (ti) = M(ti , ti−1)(Xa(ti−1));
(iii) Minimize from a random initial guess
(Pf (ti))−1 = (βB0 + (1− β) 1

N Xf (ti)Xf (ti)T + Qi)
−1

by the LBFGS method;
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The Variational Ensemble Kalman Filter (VEnKF)

Algorithm

Step 2: Compute the Variational Ensemble Kalman Filter
posterior state and covariance estimates:
(i) Minimize
`(xa(ti)|yo

i )
= (yo

i −H(xa(ti)))TR−1(yo
i −H(xa(ti)))

+(xf (ti)−xa(ti))T(Pf (ti))−1(xf (ti)−xa(ti))
by the LBFGS method;

(ii) Store the result of the minimization as xa(ti);
(iii) Store the limited memory approximation to Pa(ti);
(iv) Generate a new ensemble Xa(ti) ∼ N(xa(ti),Pa(ti));

Step 3: Update i := i + 1 and return to Step 1.
Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters



Introduction
Ensemble Kalman Filtering Methods

The Variational Ensemble Kalman Filter (VEnKF)
Stability and Trajectory Shadowing

Computational Results
Observation density and ensemble spread

Conclusions

The Variational Ensemble Kalman Filter (VEnKF)

Properties
Follows the algorithmic structure of VKF, separating the
time evolution from observation processing.
A new ensemble is generated every observation step
Bred vectors are centered on the mode, not the mean, of
the ensemble, as in Bayesian estimation
Like in VKF, a new ensemble and a new error covariance
matrix is generated at every observation time
No covariance leakage
No tangent linear or adjoint code
Asymptotically equivalent to VKF and therefore EKF when
ensemble size increasesIdrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters
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Kalman filtering with a biased model

Having a biased model means that the model produces a
forecast error with non-zero mean. In this case, our model
equations:

x(ti) = M(ti , ti−1)(x(ti−1)) + η(ti)

entail that the expectation of model error is non-zero, but
generally unknown, and can locally at ti be approximated
by a linear error.
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Kalman filtering with a biased model

This reads as

E(η(ti)) = b(ti − ti−1) 6= 0

If the bias b is known, there are various ways to
compensate for it, such as the ones presented by Dee
(2005) and Trémolet (2005).
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Kalman filters on combined state and observation
space

Let us denote the time interval between observations by
∆t .
To second order accuracy in ∆t , we can derive a two term
form for model evolution, when looking at it over short
observation intervals ∆t .
This form separates the smoothly evolving model bias from
stochastic Gaussian model noise.
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Kalman filters on combined state and observation
space

x0(ti + ∆t) = M(ti , ti−1)(x(ti)) + b∆t + η̂(ti−1) +O(∆t2)

where x0 is the true future state and η̂(ti) is Gaussian
model noise with zero mean.

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters



Introduction
Ensemble Kalman Filtering Methods

The Variational Ensemble Kalman Filter (VEnKF)
Stability and Trajectory Shadowing

Computational Results
Observation density and ensemble spread

Conclusions

Regularization implicit in Kalman filtering
A CFL like condition on filter stability

Kalman filters on combined state and observation
space

In this error decomposition, the smooth model bias term
b∆t represents drift, see e.g. Orrell (2005), Orrell et al.
(2001).
It indicates a tendency of unknown direction.
But the maximum speed ||b|| of the expected state of an
imperfect model to drift away from the true evolution of the
state of the system can be estimated from statistics of
forecast systematic errors.
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Kalman filters on combined state and observation
space

Let us recall the innovation form of the Kalman filter that
we have used.

Pf (ti) = Mi−1Pa(ti−1)MT
i−1 + Qi

Ki = Pf (ti)HT
i (HtPf (ti)HT

i + Ri)
−1.

xa(ti) = xf (ti) + Ki(yo
i − Hi(xf (ti))).

(1)
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From the last equation, we see that the state increment
δx(ti) satisfies

δx(ti) = xa(ti)− xf (ti) (2)

and is therefore computed from the innovation vector di

di = yo
i − Hi(xf (ti)) (3)

by solving a linear equation with the inverse of the Kalman
gain matrix Ki :

K−1
i δx(ti) = di (4)
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Kalman filters on combined state and observation
space

Replacing the Kalman gain here with its definition in the
second equation in the Kalman group above, we see that
the two last equations are equivalent to the following
system of two equations:

(HiPf (ti)HT
i + Ri)δzi = di

δx(ti) = Pf (ti)HT
i δzi

(5)

where δzi is the information vector.
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Kalman filters on combined state and observation
space

Inserting the first and third equations from our Kalman
group of equations into the first equation above, we get a
linear operator equation, local in time, whose operator we
shall denote by Ai .
This operator can aptly be called the symmetric Kalman
filter operator and it defines the information form of the
Kalman filter.

Aiδzi =

(HiMi−1Pa(ti−1)MT
i−1HT

i + HiQiHT
i + Ri)δzi = di

(6)
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Kalman filters on combined state and observation
space

The operator Ai above that defines the Kalman filter is
applied to measurements sampled from a stochastic
process, but it is itself a deterministic linear operator.
Ai defines the metric in the quadratic form, in which the
Kalman filter produces a least squares estimate that can
also be interpreted as the maximum a posteriori estimate
according to the Bayes theorem.
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Kalman filters on combined state and observation
space

The equation (6) is an equation defined on the space of
observations.
Its various component operators are defined on different
spaces as well:
Pa(ti−1) is defined on the state space at time ti−1,
Qi is defined on the state space at time ti and
Ri is defined on the observation space at time ti .
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Stabilizing Kalman filters

Because the symmetric Kalman filter operator (6) is
defined on the observation space at time ti , it imposes its
implicit optimality condition as a final time observation
space control.
For small enough analysis increments δx(ti), nonlinear
Kalman filtering for smoothly evolving dynamical systems
will be locally stable, if one of the following conditions is
fulfilled:
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Stabilizing Kalman filters

1 An explicit or implicit static prior or background term with a
positive weight is used, or

2 The state space is completely observable and the
observation operator is a projection operator. These
conditions imply that the spectrum of the error covariance
operator Pa(ti) is both bounded and positively bounded
from below, or
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Stabilizing Kalman filters

1 The model is not perfect on any observable subspace of
the model state space, which implies that the spectrum of
the error covariance operator Qi is positively bounded from
below, or

2 All observations are noisy and there are no rigid
constraints between errors in different observations, which
implies that the spectrum of the error covariance operator
Ri is positively bounded from below

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters



Introduction
Ensemble Kalman Filtering Methods

The Variational Ensemble Kalman Filter (VEnKF)
Stability and Trajectory Shadowing

Computational Results
Observation density and ensemble spread

Conclusions

Regularization implicit in Kalman filtering
A CFL like condition on filter stability

Stabilizing Kalman filters

The list above is formulated in terms of a small enough
analysis increment δx(ti), rather than a small time between
observations ∆t .
It can be seen that the latter is a special case of the former.
The condition of smallness of analysis increments covers
small perturbations in any direction in the state space, and
not just the ones parameterized by the time variable.
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Stabilizing Kalman filters

In both cases, the validity of the above statements
depends on the smoothness assumption of the model
evolution on the state space, so that the model evolution
operator converges to identity as the magnitude of a
perturbation decreases to zero.
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Stabilizing Kalman filters

Theorem
Stability property of VKF under Gaussian model noise. The
Variational Kalman Filter algorithm for smoothly evolving
dynamical systems is stable under Gaussian model noise, if
any of the conditions in the list above is fulfilled, and the
iterations employed in the VKF algorithm are carried out until
convergence to a limit set by the lower bound ε on the spectrum
of the symmetric Kalman Filter operator Ai . This will take a
finite number of steps independent of model resolution.
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A CFL like condition for stability

Let us now look at the impact of model bias on the stability
analysis above. We have denoted a local model bias
vector in unit time by b.
It will thus represent the direction and speed of model drift
b∆t .
We shall assume that the dynamics of both the true
operatorM and the biased discrete model M are smooth.
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A CFL like condition for stability

This assumption implies that the accumulation of bias in
the model state will be proportional to the duration of
model evolution to second order accuracy, in the form

x(t + ∆t)− x0(t + ∆t) =

M(t + ∆t , t)(x(t))−M(t + ∆t , t)(x(t)) =

b∆t + η̂(t) +O(∆t2)

(7)
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A CFL like condition for stability

where x0(t) denotes the model state evolved with the
unbiased true modelM and
where we have continued to assume that model noise η̂(t)
is Gaussian and Markov.
Because of the smoothness of model evolution, for small
enough ∆t , the drift b∆t will stay beneath ε, no matter
what is the direction of the bias b.

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters



Introduction
Ensemble Kalman Filtering Methods

The Variational Ensemble Kalman Filter (VEnKF)
Stability and Trajectory Shadowing

Computational Results
Observation density and ensemble spread

Conclusions

Regularization implicit in Kalman filtering
A CFL like condition on filter stability

A CFL like condition for stability

But as we have seen, any innovation direction that is
modified by the local Kalman operator with a factor less
than ε away from the identity will be suppressed by the
static prior plus the noise term in the Variational Kalman
Filter.
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A CFL like condition for stability

We can state this result as a conditional stability property
of the Variational Kalman Filter against model bias

Theorem
Conditional stability under bias of VKF. The Variational
Kalman Filter is stable for smoothly evolving dynamical
systems, if there is a sufficient temporal and spatial density of
observations available, with an observation bias uncorrelated
with the model bias, and such that the span of the temporally
local model bias is observed.
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A CFL like condition for stability

The conditional stability property above can be seen as a
kind of Courant-Friedrichs-Lewy (CFL) stability condition,
only in state space and not in the computational domain,
for Kalman filtering algorithms.
It means that if the model bias drives model evolution away
from the true trajectory, the bias will not accumulate
beyond a given threshold, if the corresponding drift can be
countered fast enough with an observation with an error
that is uncorrelated with model bias, before the drift has
increased beyond the assumed model noise level.
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A CFL like condition for stability

If the drift has grown too large, VKF (and EKF) may choose
to believe the biased forecast, rather than the contradicting
observation.
In the terminology or Orrell et al. (2001), the stability under
bias property above gives a sufficient condition for the
Kalman Filter to guarantee that the sequence of analyses
produced by VKF will continue to shadow the truth with a
bound that corresponds to the level of model error
covariance ||Pa(ti)||, or ||B0 + –Pf (ti) + Qi || in VKF notation.
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A CFL like condition for stability

Shadowing cannot similarly be guaranteed for the strong
constraint 4D-Var without a background term, because the
absence of a model error term and the strictness of the
model constraint prevent the strong constraint 4D-Var
operator from being a Fredholm operator.
There will always be directions in the state space that are
not observable.
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A CFL like condition for stability

The background term does stabilize the filter, but if the
background has been produced by the same biased model,
the ensuing analysis will be bias-blind, in the terminology
of Dee (2005), and continue to suffer from the same bias.
This was also empirically observed by Orrell (2005).
Strong-constraint 4D-Var is therefore not stable against
model bias.
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A CFL like condition for stability

The CFL condition for a numerical model of the advection
equation reads

Theorem

∆t ≤ ∆x/||v|| (8)

where ∆x is the shortest spatial grid length and ||v|| is the
fastest advection velocity in the system.
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A CFL like condition for stability

The corresponding expression for the shadowing condition
above reads

Theorem

∆t ≤ ε/||b|| (9)

where ε is the amplitude of Gaussian noise used in the
Kalman filter and ||b|| the speed of growth of forecast bias
Verbally, the above formula says that we must have
correcting observations in the direction of the bias b before
the corresponding drift has become larger than the noise
level of model error.
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A CFL like condition for stability

In practice, the assumptions of the stability under model
bias property may not be fulfilled and models will exhibit
bias, especially in poorly observed areas of their state
space, such as the stratosphere.
This can be countered with covariance inflation.
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A CFL like condition for stability

The shadowing condition with covariance inflation
becomes

Theorem

∆t ≤ ||B0 + Qi ||/||b|| (10)

or, more generally,

Theorem

||B0 + Qi || ≥ ||b||||δx(ti)|| (11)

for any state increment δx(ti).
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

The Shallow Water Model

MOD_FreeSurf2D by Martin and Gorelick
Finite-volume, semi-implicit, semi-Lagrangian MATLAB
code
Used to simulate a physical laboratory model of a Dam
Break experiment along a 400 m river reach in Idaho
The model consists of a system of coupled partial
differential equations
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The Shallow Water Model - 1

Shallow Water Equations

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

= −g
∂η

∂x
+ ε

(
∂2U
∂x2 +

∂2U
∂y2

)
+
γT (Ua − U)

H

−g
√

U2 + V 2

Cz2 U + fV ,

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

= −g
∂η

∂y
+ ε

(
∂2V
∂x2 +

∂2V
∂y2

)
+
γT (Va − V )

H

−g
√

U2 + V 2

Cz2 V − fU,

∂η

∂t
+
∂HU
∂x

+
∂HV
∂y

= 0
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

The Shallow Water Model - 2

Where
U is the depth-averaged x-direction velocity
V is the depth-averaged y-direction velocity
η is the free surface elevation
g is the gravitational constant
ε is the horizontal eddy viscosity coefficient
γT is the wind stress coefficient
Ua and Va are the reference wind components for top
boundary friction
H is the total water depth
Cz is the Chezy coefficient for bottom friction
f is the Coriolis parameter
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

The Dam Break laboratory experiment

Where
The 400 m long river stretch has been scaled down to 21.2
m
Water depth is 0.20 m above the dam
The dam is placed at the most narrow point of the river
The riverbed downstream from the dam is initially dry
In the experiment the dam is broken instantly and a flood
wave sweeps downstream
The total duration of the laboratory experiment is 130
seconds
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

The observations

Where
The flow is measured with eight wave meters for water
depth, placed irregularly at the approximate flume mid-line
up and downstream from the dam
Wave meters report the depth of water at 1 Hz, so with 1 s
time intervals
Computational time step is 0.103 s
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Flume geometry and wave meters
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Vertical profile of flume

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley†, Heikki Haario and Tuomo KauranneStability of Ensemble Kalman Filters



Introduction
Ensemble Kalman Filtering Methods

The Variational Ensemble Kalman Filter (VEnKF)
Stability and Trajectory Shadowing

Computational Results
Observation density and ensemble spread

Conclusions

The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

VEnKF applied to shallow-water equations

Where
Ensemble size 100
Observations are interpolated in space and time
A new ensemble is therefore generated every time step
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Interpolating kernel
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Observation interpolation in space
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Observation interpolation in time
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Model vs. hydrographs - 1
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

Model vs. hydrographs - 2
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The Shallow Water Equations - Dam Break Experiment
Laboratory and numerical geometry

VEnKF vs. hydrographs
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Evidence of the CFL condition in Hilbert space

When observations are interpolated to appear on every
time step, or less frequently
The VEnKF algorithm always stays numerically stable, but
With long time intervals between observations,
Fails to capture waves present in the solution.
Moreover, the empirical relationship between observation
interval and filter divergence is linear
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Ensemble spread vs. observation frequency
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Conclusions - 1

Kalman filters stabilize their estimates by a variety of
means
The most reliable way is to have abundant and frequent
observations combined with
Very short assimilation windows - even just one numerical
time step
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Conclusions - 2

Generating a new ensemble every time step is optimal,
because
The more frequent the inter-linked updates of the
ensemble and the error covariance estimate, the more
accurate the analysis
The local linearity assumption implicit in all Kalman filters
remains more valid
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Thank You

Thank You!
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