

WP1 : Global 20th century analysis

Development of the ocean carbon component

[MERCO] *Aurélie Albert*, Coralie Perruche [UVSQ] Marion Gehlen

ERA-CLIM2 General Assembly Meeting 19-21 november 2014, ECMWF

<u>Objectives :</u>

- set up of the coupling of Ocean Biogeochemistry with CERA-20C
- run 10 20th century reanalysis of ocean biogeochemistry

<u>3 strategies for the coupling :</u>

offline coupling, CERA-20C ocean & atmospheric outputs as forcings
offline NEMO-PISCES, CERA-20C atmospheric outputs as forcings
w/o selective damping to CERA-20C oceanic component

- online coupling, we provide code, namelists & biogeochemical inputs and ECMWF integrates PISCES in CERA-20C

<u>Set up :</u>

- choose strategy then given the strategy

- tuning of biogeochemical parameters
- choose biological & coupling parameterization
- choose initialization strategy

<u>Tool : PISCES biogeochemical model :</u>

ecosystem, carbon and oxygen cycles, 2 phytos, 2 zoos, detritus, nutrient limitations (including silicate & iron)

24 prognostic variables + online diagnostics (carbon fluxes, primary production, export ...)

<u>The offline strategy</u> : coupling with CERA-20C ocean component

The PISCES model needs a set of daily mean forcing fields:

Description	Variable name	Grid	Remark
Ocean temperature	votemper	3D field, T grid	
Ocean salinity	vosaline	3D field, T grid	
Net upward water flux	sowaflup	2D field, T grid	This is the net fresh water budget into ocean (i.e. evaporation minus precipitation)
Sea-ice fraction	soicecov	2D field, T grid	This variable is named ileadfra at MERCATOR
Net downward shortwave flux	soshfldo	2D field, T grid	This variable is named soceshwf at MERCATOR
Mixed layer depth	somixhgt	2D field, T grid	This variable is named somxlavt at MERCATOR
Wind speed at 10m	sowindsp	2D field, T grid	This variable is named sowinmod at MERCATOR
Zonal velocity	vozocrtx	3D field, U grid	
Meridional velocity	vozocrty	3D field, V grid	
Vertical velocity	vozocrtz	3D field, W grid	
Vertical diffusion coefficient	votkeavt	3D field, W grid	Two fields are archived: avt_k (initial vertical diffusion coefficient) and avt (avt_k with enhanced convection and tide effects).

The PISCES model needs a set of daily mean forcing fields:

Description	Filename	Grid	Remark
River runoff climatology	runoff_1m_nomask.nc	2D field, T grid	Contain 12 monthly means. Retrieve from ec:/ocx/NEMO/SETUP/V34/ORCA1_Z42_v3/PARAMETERS/runoff_1m_nomask.nc
Mesh and mask data	mesh_mask.nc	/	Retrieve from /perm/rd/ocx/data/nemo/V34/ORCA1_Z42_v3/mesh_mask.nc (HPC directory)
Bathymetry	bathy_meter.nc	2D field, T grid	Retrieve from ec:/ocx/NEMO/SETUP/V34/ORCA1_Z42_v3/PARAMETERS/bathy_meter.nc

<u>The offline strategy</u> : coupling with CERA-20C ocean component

The PISCES model needs a set of daily mean forcing fields:

Description	Variable name	Grid	Remark
Ocean temperature	votemper	3D field, T grid	
Ocean salinity	vosaline	3D field, T grid	
Net upward water flux	sowaflup	2D field, T grid	different convention, in PISCES we need water flux into the ocean => we multiply by -1
Sea-ice fraction	soicecov	2D field, T grid	This variable is named ileadfra at MERCATOR
Net downward shortwave flux	soshfldo	2D field, T grid	This variable is named soceshwf at MERCATOR
Mixed layer depth	somixhgt	2D field, T grid	This variable is named somxlavt at MERCATOR
Wind speed at 10m	sowindsp	2D field, T grid	This variable is named sowinmod at MERCATOR
Zonal velocity	vozocrtx	3D field, U grid	
Meridional velocity	vozocrty	3D field, V grid	
Vertical velocity	vozocrtz	3D field, W grid	
Vertical diffusion coefficient	votkeavt	3D field, W grid	Two fields are archived: avt_k (initial vertical diffusion coefficient) and avt (avt_k with enhanced convection and tide effects).

first sensitivity test

The PISCES model needs a set of daily mean forcing fields:

Description	Filename	Grid	Remark
River runoff climatology	runoff_1m_nomask.nc	2D field, T grid	Contain 12 monthly means. Retrieve from ec:/ocx/NEMO/SETUP/V34/ORCA1_Z42_v3/PARAMETERS/runoff_1m_nomask.nc
Mesh and mask data	mesh_mask.nc	1	Retrieve from /perm/rd/ocx/data/nemo/V34/ORCA1_Z42_v3/mesh_mask.nc (HPC directory)
Bathymetry	bathy_meter.nc	2D field, T grid	Retrieve from ec:/ocx/NEMO/SETUP/V34/ORCA1_Z42_v3/PARAMETERS/bathy_meter.nc

+ initial conditions & external biogeochemical forcings (dust, rivers, sediments)

Workplan with 2009-2010 CERA-20C :

Loop on forcings to get 10 years (\Box drift, stabilisation ?)

Sensitivity tests planned in offline mode :

- filtered Kz or not
- advection & diffusion scheme
- biogeochemical parameterization (In_newprod,...)
- initial conditions

Initialization strategy :

CNRM R. Seferian 3 initial states output of +3000 years simulation

- OBS : GLODAP

- V1 : CORE forcing + default PISCES

- V2 : DFS forcing + PISCES1

- V3 : DFS forcing + PISCES2

- also plan for ERA-interim + PISCES without newprod...

preindustrial atmospheric carbon

What strategy for the 20th century ? Spin-up ? How long ?

Surf Chl Globcolor 1998-2011

Annual mean of surface **chlorophyll** (mg CHL/m³)

- Observation (Globcolour)
- Simulation with filtered Kz
- Diff (total filtered) Kz

Simulation vs Obs :

- good patterns and magnitude
- poor subtropical gyres with width too thin
- equatorial bias

Total Kz vs Filtered :

- more production except in strong currents

- stronger differences in Indonesian region, upwelling better represented

Surf Chl T09-T08 2018

Annual mean of surface **nitrates** (mmol N /m³)

- Observation (WOA05)
- Simulation with filtered Kz
- Diff (total filtered) Kz

Simulation vs Obs :

- good patterns and magnitude
- equatorial bias

Total Kz vs Filtered :

- more nutrient except in circumpolar current

- weak differences (less than 1 mmol N /m³⁾

Surf NO3 T08 2018

Surf NO3 T09-T08 2018

Annual mean of equatorial **nitrates** (mmol N /m³) from surface to 1000m :

- Simulation with filtered Kz
- Diff (total filtered) Kz

Simulation :

- strong values at depth
- eastern boundary upwelling

Total vs Kz :

- dipole of positive/negative differences surface/subsurface due to enhanced vertical mixing

Annual mean of **carbon flux** (gC/m²/yr) from ocean to atmosphere :

- Observation (Takahashi)
- Simulation with filtered Kz

Simu vs Obs :

- general good direction of the flux
- carbon sources to atmosphere too big
- very small carbon sink in North Atlantic & Austral Ocean

\implies A lot of work to do !

C flux T08 2018

<u>Technical aspects :</u>

- wall-time of one 10 years run : ~43h 📥 100 years : ~18 days
- reconstruction of outputs takes 4 times more time than running (in parallel)

need for optimization (use of land processors in the multi-processors cut-out to debug)

storage for one 10 years run : 1.25T → 100 years : 12.5T (outputs only)
storage for one 10 years run : 1.55T → 100 years : 15.5T (with annual mean)

 \implies distribution of the outputs : which variable to keep ?

- CMIP norms for name, units and aspect of the outputs ?
- management of the daily forcings : copy + unzip 100 years in a row not possible

