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Optimal flow-dependent selection of channels from advasocedders in the presence of cIo@ECMWF

Abstract

This study aims to illustrate a general procedure based dirfkwewn information theory concepts
to select the channels from advanced satellite soundedithis most advantageous to assimilate
in all-sky conditions — i.e., both in clear sky and in the jemese of cloud — using a flow-dependent
estimate of forecast uncertainty. To this end, the stanidarative channel selection method, which
is used to select the most informative channels from advhirdeared sounders for operational
assimilation, was revisited so as to allow its use with mesgents that have correlated errors.
The method is here applied to determine a small set (nam4)y;-Zelatively to a total of 8461
channels that are available on the Infrared Atmospheric\8iog Interferometer (IASI) on board
the EUMETSAT Polar System Metop satellites — of humiditpsigve channels, which can be used
to perform all-sky data assimilation experiments, in addito those currently used for operational
data assimilation of IASI data at ECMWEF. Care was taken tougiee channel selection procedure
a realistic specification of forecast error uncertaintyjoihwvas determined from an ensemble of
data assimilation (EDA) forecast fields for a case study Ip 2012. Also, (cumulative) weighting
functions that provide a vertically-resolved picture o ftotal) number of degrees of freedom for
signal expressed by a given set of measurements were icgddwhich allow us to define a novel
channel selection merit function that can be used to seleesarements that are most sensitive to
variations of a given parameter over a given atmospheriongg.g., in the troposphere).

1 Introduction

Over the last decade or recent decades there has been adblenigcrease in the amount of data that is
being acquired by satellite sounding instruments and diisseed to operational meteorological centres
for assimilation, particularly in the infrared spectragien. At ECMWEF, the infrared sounding instru-
ments that are currently monitored and assimilated areitje Resolution Infrared Radiation Sounder
(HIRS), on the EUMETSAT Polar System Metop-A polar orbitisatellite, with twenty channels; the
Advanced InfraRed Sounder (AIRS) on board AQUA and meagusirer 2378 channels; the Infrared
Atmospheric Sounding Interferometer (IASI) also onboandvetop with 8461 channels and the Cross-
track Infrared Sounder (CrlS) on board the Suomi NPP sttelliith 1305 channels. In each case only
a subset of channels are assimilated.

In order to be able to exploit such wealth of data, operatioeatres had to overcome numerous techno-
logical and scientific challenges, including making appigtp choices about which subset of channels
from each instrument to consider for assimilation. The femwbwas put on firm theoretical grounds by
Rodgers 23], who described an iterative method to determine an optsaabf channels by maximizing

a figure of merit based on their Shannon information contenparticular, according to this method, a
new channel is selected if it provides the largest inforamathcrement with respect to the information
content already provided by all previously selected chinnf subsequent study2]] showed that the
iterative method provided a more effective channel salactii.e., a larger state estimate error reduction
— than other existing methods based on a non-iterative apprsee, e.g.,20]). As recognized in 21],

a likely reason for the shortcomings of the non-iterativehuods is their difficulties in providing a se-
lection of channels that are informative over atmospheaitigl columns at different height ranges, i.e.,
that are representative of different spectral regions.

The iterative channel selection method — after appropiaéescreening of channels with too large
forward-model uncertainty or with characteristics thatkem#em more sensitive to mis-specifications
of forecast error uncertainty in observation space (e.ih multiple gas sensitivities or with jacobians
that have multiple peaks or long tails) —was used at ECM\Bjfo[determine an optimal set of (currently
191) IASI channels sensitive to atmospheric temperatuagevwvapour, ozone and surface conditions for
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operational assimilation. The impact on analyses and &sts®f the selected IASI channels with respect
to the ECMWF operational system at the time of the experisisntliscussed in6]. The same channel
selection methodology was also used to select the mostitiire channels from AIRSSE].

In order to reduce the amount of computational resourcedeautley the iterative method, the channels to
be selected are usually assumed to have independent esrtiratshe retrieval error covariance can be
calculated sequentially. This is, however, not often treeees radiance data calculated with fast forward
models used for operational assimilation can have spbctratrelated errors (seel§], his section 6
and Figure 13) with length scales that can be significantiyelathan those due to apodization, which
only involves adjacent channels. Other relevant sourcestei-channel error correlation include: the
variations of atmospheric species such as water vapouramreoahen selecting temperature sensitive
channels; errors arising from shortcomings in accountomgcfoud as well as surface emissivity errors;
representativeness errord].|

A recent channel selection studypq investigated a way to account for observation error catiehs
arising from imperfect knowledge of the concentration ofamstrained (i.e., not retrieved) atmospheric
constituents with absorption lines in the spectral regibas are sampled by the set of channels consid-
ered for selection. Observation errors are expresse@%haf a combination of random and systematic
components, with the random component being assumed asadlyegncorrelated and as the only ob-
servation error component that is relevant to update thigevat error covariance calculated using the
previously selected channels. In this way it is still pokestib make use of the sequential method to up-
date the retrieval error covariance, with some computatisavings. At the same time, both observation
error components — the diagonal random error and the spieatoarelated systematic error components
— are considered to compute the information-content bagedefiof merit used for channel selection.
Another recent study 1f] investigated the use of the iterative channel selectichrtigue to comple-
ment the IASI channels, which are already in use for operatiassimilation of IASI data in clear sky
conditions (see €]), with additional channels that are most effective for jbiat retrieval of ice and
liquid water content using IASI data without solar contaation. The impact of the additional channels
on water vapour estimates was also assessed. The authodstfat the additional channels provided at
best only marginal improvements with respect to the casenvaindy the standard channels are used in
the retrieval.

In this study, the iterative channel selection methodologg revisited and modified to be used in a
consistent way with observations having correlated errdhgs novel formulation of the iterative non-
sequential selection method was then used to select theafiestive IASI channels for the estima-
tion of atmospheric water vapour profiles both in clear skg amercast conditions. To this end, a
flow-dependent estimate of forecast errors, derived frolB@NWF's “ensemble of data assimilations”
(EDA) run on a 91-level and 50-member configuration, was fsed case study during summer 2012. It
is important to note that the main aim of this work is not tdaep existing sets of IASI channels selected
for assimilation in clear sky but rather to determine a reddy small number of additional channels that
can provide the largest impact on meteorological analyseslisky conditions. This means that the
IASI channels selected in this study are considered to besbhésd to assimilate water-vapour sensitive
observations of radiation emerging from either a clearesks cloud-affected scene with a single obser-
vation operator that includes a parametrization of mudtgtattering by clouds and no need for cloud
detection (see, e.g.2]).

The paper is structured as follows. Sect@provides a detailed description of the channel selection
methodology and a step-by-step algorithm. Also in thisisacthe standard information-based figure
of merit used for selection is extended to allow a selectiat is optimal for estimation over a subspace
of the state space (e.g., over a given height range or a gasemyeter). In sectiod a description of the
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case study, with particular attention to the quantificatibthe sensitivity of the radiation emerging from
the atmosphere to the presence of cloud at a given locatiproisded. Sectior discusses the effects
of the chosen forecast and observation error specificatarnthe signal-to-noise characteristics of the
satellite instrument, while sectidprovides details on the selection of optimal channels foospheric
humidity estimation in all-sky conditions as resultingrfrahe use of the selection method described
in this paper, including a list of the selected channels.aliina summary of the work and its main
conclusions are given secti@n

2 lterative channel selection with correlated observatiorerrors

The channel selection method as described?ig| ig based on finding the channel that, at each iteration,
provides the largest increment to the number of degreegeflirm for signal (DFS) already provided by
the previously selected channels. This procedure is regeattil the required number of channels have
been selected. To reduce the computational costs of thaivieiselection process the original algorithm
also assumes that the measurement error covariance fasrtk&ered channels is diagonal. In this way
it is possible to calculate the maximum-a-posteriori estal error covariance found when making use of
a set ofk measurements (see, e.g24], his section 5.4) as an update of the retrieval error cavae
valid for a set ok-1 measurements. This simplifying assumption is also usg@%|, while observation
error correlations are instead taken into account within@irS-based figure of merit used for channel
selection.

The iterative channel selection method used here avoidssa®f the sequential retrieval error covari-

ance update formula and can then consistently be used irrésere of correlated observation errors.
The increased computational costs incurred when avoitiegequential update proved to be affordable,
also considering that the method is not supposed to be usedo-real-time applications. But before

discussing the algorithm further let us define some relegaantities.

In order to retrieve an estimate ®f € R", the true state of the system, we can make use of a set of
measurements that are assumed to be components of the emastivectoy® € R™. The relationship
between the measurement vector and the state vector carittesas

yo=H(x")+¢° 1)

whereH (x') € R™" is the observation operator asfl € R™ is an additive observation error vector,
assumed to be unbiased and Gaussian-distributed withnwaiar covariancdr,. If the observation
operator is approximately linear in a given region of theéesgpace aroung it is meaningful to approx-
imate Eqg. 1) as

y° ~ H(xo) +H(X' —xg) + £°. (2)

whereH = (dH/dx) calculated akg is the Jacobian matrix. In this case, we can defimes (see 24],
his section 8.3)
y =y° — H(Xg) + Hxgo ~ Hx' + £°. (3)

The algorithm used in this work is based on maximizing a figofrmerit given by the number of DFS.
The total number of DFS using a given set of measuremdais given by (e.g., 23], his section 2.5)

ds=tr(l,—P*B~ 1) =tr(A) (4)

whereP? € R"™" is the retrieval error covariance matrix when a measurewegtbr withm component
is used in the retrievaB € R"*" is the forecast (also denoted as prior or background) eowar@ance
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matrix, |, is the identity matrix of orden and whereA is the so-called averaging kernel matrix. Let us
now introduce an extension of the DFS-based figure of maattriimy be used to maximize the number
of DFS over a given number of state vector components, thavés a given range of model levels (e.g.,
in the troposphere) or a given state vector parameter (@ggific humidity or the profile of a given
atmospheric chemical compound of interest).

2.1 DFS weighting functions and the effective DFS

If now B is expressed a = XX, whereX € R"™" is the symmetric square root Bf we can define the
signal-to-noise matri of the considered measurementsSas R~1/2HX. The signal-to-noise matrix
can be expressed in terms of its singular value decompositsaS = UAVT, whereU € R™™ and
V € R™"are orthogonal matrices whose columns are the left andsighular vectors o8, respectively,
and where\ € R™" is the matrix whose nonzero elements have the same row anchcohdexes and
are given by the singular valugs of S, with j = 1,...,r wherer is the rank ofS, with r < min(m,n).

It is possible to show (sed. §], his section 5) that the retrieval error covariari®ecan be expressed in
term of the singular values and the right singular vectorS a$

2 -1 r VVT n
Pa:XV ( (Ar+|r) Orx(n—r) >VTX: ZX J 12X+ z XfVJV-JrX (5)
Otn—r)xr In-r =1 l+)‘j i=r+1
Noting thatzT:leV}— = In, EQ. 6) can be written as
d AJ'Z fo, Ty f
2 17
JleJr)\j

From Egs. 6) and @) we can write

r A2 r r 1
ds=tr(y T‘/\fovjv}xfs—l) =tr(y ds; X "vjv]X'B™1) = > d;tr(X Vv X, (7)
=1 j =1 j=1

. . A?
asds can also be expressed as (s&€],[ his section 4)ds = zﬁzlfjf\f = Zﬁzldsj- As the trace of a
matrix is invariant under similarity transformations (¢.fL0], their section 7.1.1) Eq.7§ can be written
as

r r
ds=Y dsjtr(vjv]) = S dsjV]v; (8)
=1 =1

Noting thathij = 1 asvj is an orthonormal basis vector, the expression in Ejlitking the degrees
of freedom for signal (DFS) in observation space with the DF8ate space represents a trivial identity
that follows from the fact that the two quantities are eqeimti(e.g., R4], his section 2.5). However, it
is possible to make use of the diagonal elements of the m&ql\bfva given by

s; = diag(dsjViV] ) = dsj (V3 V3, -, V) = dsjv; oV )

j?

whereo denotes the element-wise (or Schur) product, in order teraehe how the number of DFG;
are vertically distributed for each of the variables inelddn the state vector. Note thait= 3'_;sj =
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diag(A). From Eq. 8) it also follows that the vertical distribution of the totaimber of DFS for a given
model variable is given by

r r r r
s=() dsj V3, > dsjV5;, -, > dsjVa) = D dsjvjov;. (10)
=1 =1 =1 =1

In other words, the quantitt;tsjvlzj represents the fraction df; achieved on a given model variable (e.g.

temperature) at model levewhile zgzldsjvﬁ- is the total number of DFS achieved on the same model
variable at model level. The components o define thej-th DFS weighting functiorfor all relevant
model variables, while the componentssafefine thecumulative DFS weighting functidor all relevant
model variables. Note that the elements (always non-neaif the cumulative DFS weighting function

coincide with the diagonal elements of the averaging kemrafix A.
The sumdE™ of a subset of the componentssdefined over a given region of the state space defined as

it k2 r k2 V2
de" = S = ds. ki (11)
S G, 12: J k;l J

represents theffective degrees of freedom for sigaahieved by a set of measurements over that region
of the state space, with andk, being the lower and upper model levels defining an atmosp(aitial)
column of interest, for a given parameter of interest (eatmospheric humidity). As discussed in the
next section, the (effective) degrees of freedom for sigaal be used, for example, as a figure of merit
for channel selection in order to select the sehgf channels that provide most information about the
whole (selected region of the) state space. Notedffat= ds whenk; = 1 andk, = n. Itis also important

to note that the iterative channel selection results obthirsing the number of DFS as merit function do
not change if another monotonically increasing merit fiorcbf a set of); is used instead. In particular,
the same set of channels are selected when using the Sharfoondtion content defined as (see,
e.g., R4], his section 2.5.2) = 0.5%;In(1+A?).

Finally, it is useful to compare the newly-introduced DFSgiding function with the familar jacobian
defined as a given row df in Egs. 1 and2. To determine the region of the state space a given instru-
ment can sense it is necessary to explore the jacobiansl imsttlment channels of interest to check
where they are significantly different from zero and possibhere they peak. This region of the state
space, however, in general does not coincide with that ootwédigiven sounder can provide most of its
information, which is also a function of the observation émekcast error covariance matrices used for
assimilation. Also, the jacobians can be negative and tlig cause confusion when the jacobians are
used as a measure of vertical resolution for a given variakie cumulative DFS weighting functian
includes contributions from the jacobians of all considerkannels and then it provides a concise depic-
tion of the sensitivity of a given instrument on differentrtigal atmospheric layers for different model
variables. Also, from the fact that the sum of the componehtds equal tods it follows that the sum of
the elements of over a given atmospheric partial column and model variabbntifies the number of
DFS that the instrument can provide on the chosen modelblaraver that region. As explained above,
however, the characteristics of the DFS weighting funatieary according to the forecast error uncer-
tainty used for retrieval or assimilation so that they areamy linked to the instrument specifications.

2.2 Description of the selection algorithm

An iterative, non-sequential, channel selection algorittan be devised as follows. At the first iteration
stepl = 1 the instrument channgis considered and the signal-to-noise maSjix; ; RN s calculated
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as
hT
S:l,i = _ona (12)

G

whereh and g° are the row ofH and the observation error standard deviation correspgnigirthe
measurement channielrespectively. Then the Gramign._,; € R of §_, ., given by

O=1i = SI:LiST:l,i = )‘|2:1,i,j:17 (13)
is computed, where the indexorders the singular values & ;. Then the numbeds_,; of DFS for
channeli is calculated as X

dy , — A1 j-1 (14)
=1i °
1+)‘I2:1,i,j:1
Note that from Egs.12), (13) and (4) it follows thatdg_,; can also be expressed as

h{ Bh;
Oe =11 15
S=1i 02 + hiTBhi ( )

and this shows the equivalence between Bd) &nd Eq. (17) in 21].

At iteration stepl = 1 the Gramiang|—1; and the numbeds_,; of DFS are calculatedh times, with
i=1,....,m. Itis important to note that these computations can be padd in parallel. The channel
selected at = 1 is the channelk with dy_,; = max(ds_, ), withi=1,....m

The iteration step = 2 consists in calculatin§—,; € R2*" as
“12( ht
S-2i =Ry, ( o )X (16)
|
whereR|—p; € R2%2 js a submatrix of the observation error covariafcdefined as

2 .
o° r(ip,i)o’a?
Ri—2i = ( r(i )¢ " )le | ) =Li2ilaiL Lo 17)
1

0 ~0 O
i)op o; of

1/2

andR 57 = Li—2il ;L _,;. The Gramian matriGi_z; € R?*2, with i # iy, is then given by

Gi—2i = S=2iS 2 = Ui—2i A" U{y; (18)

Then the number of DFS for chanriek i, is calculated as

I 27I7j
(19)
Z 1+)\I =2ii,j

with r < min(2,n). At iteration stepl = 2 the Gramian matrixG|—z; and the number of DF§y _,,
are calculatean— 1 times, withi = 1,...,m+i1. The channel selected bt 2 is the channei, with
ds_,;, = max(ds_,,), withi =1,....m#ij.

The algorithm is iterated until= nse| channels are selected. Note that if the state vectsicomposed
of two state vectors; andx, — say temperature and humidity — and the background err@riemce
matrix B is block diagonal over the subspaces definedbgndx,, then the signal-to-noise matr&can

be calculated aSy = (Sy,, Sx,)-
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Finally, note that when there is the need to select chanhatsate particularly suited to reduce retrieval
errors over a given region of the state space, it is possibleflaceds ; with dg‘:f as a channel selection

figure of merit. This can be achieved by replaci@g € R'*!"in Egs. 13 and 18 with GL e R™" the
Gramian ofS, j, given by '

Gl =SS, =ViiAL V] (20)
and then by using thg-th columny,; ; of V;; and thej-th diagonal elememfi’j, with j=1,....rto
calculatedg"ff from Eq. 11 over a selected region of the state space. It is then pogsilbégplaceds with
déf in Egs. 14 and 19 and use it as a figure of merit for channel selection over atasgbspace of
the state space. Note that with this modifications the coatipmal expense of the selection algorithm
becomes significantly larger, in the typical case when ns > |, as at each iteration it is necessary
to compute the eigenvector decomposition afi a n rather than of d x| matrix. This can still be
computationally affordable, e.g., when only temperatsreonsidered in the state vector and there is the
need to find the best channels for temperature estimatign,iethe troposphere.

3 Description of the case study

In this work, the channel selection method discussed ab®wsad to check whether the informative

potential on key atmaospheric variables of a set of instrirabannels changes when cloud is present in
the instrument field of view. The answer to this question neagdIto the selection of a set of channels
that provide significant information on temperature or watgour in all-sky conditions.

To study channel selection strategies that are effectideraloust both in clear sky and in the presence
of cloud a case study was selected on 30th June 2012 at 2100 AJ5CG-member ensemble of short-
range forecasts — including also cloud liquid and ice watertent and cloud fraction — generated from
an ensemble of data assimilations (EDA) at ECMWF was useliisrstudy to define a flow-dependent
forecast error covariance over 91 model levels. Care wamték inflate the variance of the forecast
ensemble in order to be approximately equal to the EDA meaarsgerror (routinely estimated from
operational ECMWF analyses) so as to lead to more reliabbcésts 3]. For each ensemble member
at each location it is possible to calculate the cumulativad coverN;q, defined as

n 1—max(N|,1,N|)
a=1—(1—N
Neot ( 1)||1 1N

(21)

when all cloud layers between the tdp= 1) and the bottom layel & n) are considered. Here we
have assumed cloud layers in the column to have maximunenarwverlap 2] [17]. Figure 1 shows
the ensemble-mean valueshf; for the whole atmospheric depth as well as the 135 locatibasnao-
spheric columns over ocean that are cloud-fileg; & 0, marked with a red cross) or the 169 overcast
(Ntot = 1, marked with a blue cross). Given that cloud fraction is a-negative quantity, the locations
that are cloud-free or overcast in the forecast ensemble memalso such for all ensemble members.
We can then denote the cross-marked columns as either “etuy” (a.s.) —i.e., with probability 1,
as defined by the considered forecast ensemble — cloud fees.@vercast. Hereafter, when referring to
clear-sky or overcast conditions, itis assumed to congigem in an almost-surely sense. Also, in Figure
2 is shown the vertical distribution of ensemble mean clouahtjties at the a.s. overcast locations.

In this study the radiation emerging from the atmospheresivaslated using version 11 of the RTTOV
package (Radiative Transfer model for Television Infra@aservation Satellite Operational Vertical
sounder) 12] in the "scattering parametrization” configuratiorl7] to account for cloud radiative ef-
fects. In order to investigate the sensitivity of IASI obsdions to temperature and water vapour at
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Figure 1. Ensemble mean cumulative cloud fractiog; Mver all 91 model levels. Cloud-free columns (with
Niot = 0) and overcast columns (withN= 1) are marked with a red or a blue cross, respectively.

169 a.s. overcast locations 169 a.s. overcast locations 2 169 a.s. overcast locations
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Figure 2: Ensemble mean cloud fraction (left panel), specifdoud liquid water content (mid panel) and specific
cloud ice water content over all 91 model levels at the 169@uercast locations shown in Figute
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Figure 3: Water vapour and cloud ensemble mean profiles alexctal overcast location over the ocean.

a given channel depending on cloud conditions it is posgiblealculate the Jacobian matrix, i.e. the
linearized observation operatblr (see Eq.2) about the ensemble mean forecast. Fighshows water
vapour and cloud ensemble-mean profiles at an overcastdoaater the Atlantic ocean. In Figuek
are shown the elements corresponding to atmospheric tampeand humidity of a row of the Jacobian
matrix linearized about the ensemble mean forecast camnelépg to IASI channel 921 (centred at 875
cm~1 in the infrared atmospheric absorption window). In paittcuit is interesting to check how the
atmospheric temperature and humidity jacobians change wloeid is removed from the instrument
field of view. Figure4 shows that the height of the peak of the temperature jacadbittre presence of
cloud is very close to that where cloud ice water densitylreadt maximum value, while in clear sky the
measurements of Tb in the considered atmospheric windonnehare mainly sensitive to temperature
variations in the lower troposphere, as expected. Alsoptbasurement’s vertical resolution is consider-
ably higher when cloud is present in the instrument field efwand the peak temperature sensitivity is
more than 20 times larger than that experienced in clear®&kg.changes in the water vapour jacobian
due to the presence of cloud are largely similar, althoughattitude of the peak of the jacobian in the

presence of cloud is higher and its width is larger than irctse of the temperature jacobian when cloud
is present.

4 Evaluation of flow-dependent signal-to-noise charactestics of IASI chan-
nels

As recognized by previous channel selection studies citetlis paper, from the discussion presented
in section2 it follows that information-content-based channel setectesults depend critically on the
signal-to-noise characteristics of a given instrument@sessed in a particular data assimilation or re-
trieval system. In particular, a meaningful expressiontffier number of DFS of a set of measurements
requires full-rank expressions for the vertical forecasbrecovarianceB and observation error covari-
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Figure 4: Temperature and humidity jacobians at a selectegf@ast location over the ocean (the same location
chosen in Figure) in cloudy conditions and when cloud is removed from the téldew.

anceR.

A forecast ensemble of large sixe (i.e., with K > n), for example, can be used to provide a full-
rank approximation oB. The dimensiom of the state space, however, is usually significantly larger
than the ensemble size (even when the state describes timlvprofile of a single model variable!)
so that the directions spanned by the forecast error vedenged from the ensemble explore only a
subset of the state space at observation location. Thissrtbahthe vertical forecast error covariance
estimated from the ensemble is rank deficient and it is wedikmthat this may lead to spurious long-
range correlations (e.g.,11]). To avoid this problem, two complementary strategieshame adopted:
a) vertical localization of the state space to suppres®lations beyond a given threshold distance from
each model level by multiplying element-by-element theeéaist error covariance with a correlation
matrix with compact support (e.g.,14] [15]); b) to combine the flow-dependent EDA forecast error
variances with climatological (i.e., full rank) verticabrecast error correlation matrices derived from
EDA forecasts over two seasons and geographically varying.

Figure5a shows the vertical temperature forecast error correldtmm EDA at the previously selected
overcast location. The figure shows that in the boundaryr lagtow about model level 78 (at about 870
hPa) the temperature error correlations at different mtmlells are relatively large. This is consistent
with a well-mixed boundary layer that is decoupled from the\ee free troposphere. Also evident
is the presence of spurious long range correlations. Ameaor decomposition of the correlation
matrix shows that the rank of the matrix is insufficient (iless tham = 91) and equal to its theoretical
maximum value£ K — 1= 49). As anticipated, we try to address this shortcoming bglining the raw
correlation function with a correlation function (as ddéised in [9]) that is set to zero beyond a given
distance, here chosen to be reached when theratidhe distance between two different model levels
and the atmospheric scale height is equal to 2.0. The lethtinrrelation matrix is shown in Figub.
The localized correlation matrix looks reasonable asdinstthe physically-consistent large correlations
in the short-range while it suppresses the spurious oneistande larger than two atmospheric scale

10 Technical Memorandum No. 727



Optimal flow-dependent selection of channels from advasocedders in the presence of cIo@ECMWF

Temperature vertical error correlation, 50-member EDA

60
T

80
T

S

20 40
=

20

IS
=)

Model levels
-"II‘" L
L]

80

o
=}
_ .

H
Model levels

(@)

Localized (r=2.0) temperature vertical error correlation, 50-member EDA

Model levels

20

IS
o

o
=}

80

20

40
0

60
0

80
0

L L
Model levels

1.0

(b)

Figure 5: Temperature vertical forecast error correlatitnom a 50-member EDA. Panel (a): raw EDA correla-
tions; panel (b): localized correlation matrix with=£ 2.0 (see text).

heights. The rank of the localized correlation matrix is rfoand equal to 91, the dimension of the
state space at observation location when only the atmaspkenperature profile is included in the state
vector.

As discussed above, it is also possible to consider a relgitinaatology of vertical forecast error cor-
relations — in addition to the EDA-derived variances — tagkite the signal to noise matrix for a given
linearized observation operator. Vertical correlatiores available for temperature, humidity and ozone
over regions of 625-km grid size and averaged over a montlséason 1]. Recent investigations1p]
show that the seasonal dependence of the correlations Iksitarespect to their geographical vari-
ability. In Figure6 (left panel) the climatological vertical temperature fwast error correlation over 91
model levels, interpolated at the selected location is sh@wcomparison between Figurbls and6 (left
panel) shows that the localization procedure applied toaheEDA vertical error correlation matrix can
make the correlation length scales of the raw matrix conpara those characterizing the climatologi-
cal covariance, with still some differences in the uppeatssphere above model level 20. An evaluation
of the eigenvalues of the correlation matrices determirm/e (see Figuré, right panel) also shows
that the absolute differences between the 49 largest eii@s/of the climatological and localized EDA
correlation matrices are dramatically reduced with resfzethe corresponding difference when the raw
rather than the localized EDA correlation matrix is considie The localized EDA correlation matrix,
however, is less conditioned than the climatological one tuthe lower magnitude of the eigenvalues
corresponding to eigenvectors of the localized-EDA catieh matrix spanning the subspace of the state
space that is not represented by the raw forecast ensemble.

Overall, the comparison of the characteristics of the Iaedl version of the forecast error covariance
based on EDA and of that from a regional climatology shows ith& reasonable to make use of a
localized flow-dependent forecast error covariance fortaobenodel fields to provide an estimate of
the information content of a number of measurements that ioasistent as possible with the actual
information content provided by the same number of measemésnwhen assimilated in an operational
data assimilation system. In view of these results, the mélaselection method applied to IASI data in
this work always made use of a localized EDA-based forecast eovariance to determine an expression
for B to be used in the calculation @f, as discussed in secti@n In particular, the state vector as defined
in this study includes temperature, humidity and ozone aomapts. The temperature components are
defined over 91 atmospheric model levels and one surface (Bwdace skin temperature), while the
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Figure 6: Temperature vertical forecast error correlatimm a regional climatology, interpolated to the selected
overcast location (left panel); eigenvalues of tempemtgrtical forecast error correlation from a regional cli-
matology, localized-EDA and raw EDA at cross-hair locat{oight panel).

humidity and ozone components are defined over 91 atmospirerdel levels. Note that errors on
the temperature (including surface skin temperature),itiityrand ozone components of the state are
assumed to be mutually uncorrelated.

The IASI observation error covarianée used in this study — in brightness temperature units — is that
provided with the 1DVar scheme developed by the Met OfficetierSatellite Application Facility for
numerical weather prediction (NWP-SAF) and includes faduaodel error. The apodization process
applied during the radiometric calibration of the obseora from IASI introduces correlations between
adjacent channels. As the channel selection method ushisiwark allows for the presence of correla-
tions, there was no need to exclude adjacent channels oriceraaipannel was selected, as done when
sequential methods are used. More generally, the selett&ihod presented here allows the inclusion
of systematic error components that present relativelg-l@mge spectral correlations, which may not be
compatible with channel exclusion procedures. Of this kiralerrors arising from imperfect knowledge
of “contaminant” species affecting the estimate of a “tdrgemponent of the state vector, such as er-
rors due to incorrect specification of water vapour or oza@reentrations within a temperature retrieval
(see, e.g.,34], his section 4.1.2,7] and [25], provided that the contaminant and the target species have
independent forecast errors. In this case, the total ohenverror covarianc®™ to be used in the
place ofR to select channels that are best suited to estimate a tagges using the method described
in section2 can be calculated as

Rtot:RJrzHcquH;, (22)
|

whereH; andB, are the jacobian and background error matrices, respictioe the contaminant;.
Note that the use of the exact expression for the “systefnagimponentsHg, BCng of the observation
error covariance makes the procedure, usedrjrafid [25] to represent the systematic error covariance
by means of an ensemble of perturbed measurement vectoesuheecessary. Figuré shows the
spectral dependence of the standard deviation of the coemt®of the IASI observation error covariance
used in this work for channel selection purposes (left paaed their spectral correlations for channels
below 2200 cm? (right panel).
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Figure 7: Standard deviation of IASI observation error campnts used in this work. Left panel: noise (including
forward model error contributions) as provided with the IdD¥cheme developed by the Met Office for the NWP-
SAF (red solid line), interference from humidity (blue ddine) and from ozone (green solid line). Right panel:
IASI observation error correlation for channels below 22981, including contributions due to apodization as
well as humidity and ozone (see Ep).

5 Channel selection results

The channel selection method discussed in se@inms applied to each of the 135 clear-sky and 169
overcast columns in our case study, with the aim of selee@ingmber of humidity-sensitive 1ASI chan-
nels to be used for all-sky data assimilation experimentsduition to the temperature- humidity- and
ozone-sensitive IASI channels already assimilated ojogicty in clear sky. Note that the channel se-
lection figure of merit used here is the number of DFS exprtebygen set of measurement channels, but
a figure of merit given by the number of effective DFS (see El}.could have been used instead if the
aim was to select a number of humidity-sensitive IASI ch#sneer a given atmospheric region.

Similarly to the previous studies cited in sectiyrthe first step was to select channels primarily sensitive
to atmospheric temperature profile variations located sm1h um carbon dioxide band, in a way to
minimize contaminations from atmospheric species suchasrwapour, ozone and carbon monoxide
that are radiatively active in the infrared, as well as taévmn-local-thermodynamic-equilibrium (non-
LTE) effects and solar contributions. An additional benefithis channel pre-screening procedure is
that it reduces the nonlinearity of the observation operathich could make the temperature jacobians
dependent on the state of the contaminant species and iptijetgad the data assimilation analysis
to be critically dependent on the minimization first guesseraperature jacobian, for example, may
result in having its peak at an incorrectly lower height ia troposphere when the short-range model’s
forecast underestimates the mixing ratio of the contantispecies (e.g., water vapour). To this end, 100
temperature-sensitive IASI channels were selected antarsgtwith wavenumber less than 900¢m
(i.e., out of a total of 1020 IASI channels) at each considiémeation. For temperature channel selection,
the total observation error covariance matrix includedesystic contributions (see EQ2) to account
for contaminations due to uncertainty on humidity and ozahde for humidity channel selection the
only additional systematic contribution was that due tonezoncertainty.

Once the 10@h channel was added to the list of those maximizing the numbBF& for temperature,
at each location the temperature state vector was augmeiittedhe 91 components of the specific
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Figure 8: Number of degrees of freedom for signal (DFS) adhikin clear-sky (left panel) and in overcast (right
panel) conditions when selecting first up to 100 temperasersitive IASI channels and then when selecting up
to additional 50 channels that are sensitive to water vapdure red dashed line represents the number of DFS
obtained when all 8461 IASI channels are considered, at bar<sky and overcast locations where the largest
values of DFS are achieved for the maximum number of selebimuhels. The number of DFS for the channels
selected at these locations are denoted by red dots, whelentimber of DFS for the channels selected at the
locations where the largest values of DFS for temperature ahieved for the maximum number of selected
temperature channels are denoted by green dots.

humidity vertical profile. A further set of 50 channels at edocation were chosen this time among
those with wavenumber between 1100 ¢nand 2200 cm? (i.e., out of a total of 4399 IASI channels)
to exclude the channels already selected for temperatwelbas to avoid solar contamination and non-
LTE effects. The number of DFS achieved by the selected @lam@me shown in Figur@ Note that the
two locations (one in clear-sky and one in overcast conaiiavhere the overall maximum number of
DFS is achieved are different from the locations where theimam number of DFS for temperature is
captured. Note also that the maximum number of DFS with 1@t channels in clear-sky (overcast)
conditions is 74.93% (64.52%) of the 15.10 (21.48) DFS asdewhen all 8461 IASI channels are
considered, which is still only 8.2% (11.7%) of the valuetthauld be necessary to achieve the ideal
goal of a direct and error-less joint estimate of the wholg-&8mponent state vector.

5.1 Channel selection dependence on the presence of cloud

Itis now interesting to discuss the different channel s@laaesults obtained in clear sky and in overcast
conditions. Considering the cloud vertical distributionosercast locations shown in Figu2e which
indicates that overcast conditions are reached below &uhPa, it is reasonable to expect that the
most informative water vapour channels selected in ovezaglitions have jacobians that are mainly
different from zero above about 800 hPa. In clear sky, howetvis expected that the selected channel
also provide information about humidity in the lower tropbsre. In Figured are shown the water
vapour jacobians for the ten most informative humiditysstive channels at four selected clear sky
and overcast locations. Figuéendeed confirms that in clear sky the selected channels aanderan
estimate of water vapour mixing ratio over a wider vertialge, although the largest contributions to
the total humidity DFS both in clear-sky and overcast coodé come from channels that are sensitive
to water vapour in the middle and upper troposphere.

The IASI water vapour channel that, in combination with thevjpusly selected 100 temperature chan-
nels, is mostly selected (over 28 out of 135 clear sky locadido provide the largest number of DFS
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Figure 9: Water vapour jacobians — here defined as the vdrpoafiles of brightness temperature perturbations
due to a 1% water vapour volume mixing ratio profile pertuibat- for the ten most informative humidity-sensitive
channels at four selected clear sky (left panel) and overgaght panel) locations. In the clear sky case, the four
locations are at (73.48N,146.6PW), (33.08N,25.CE), (16.26'S,120.38E) and (26.368S,34.88E), while in the
overcast case at (89.2K,100.0E), (74.58N,162.60W), (62.24S,64.0E) and (68.97S,149.33W). Note that the
first selected channel — whose jacobians at the four seldotations are denoted with a red solid line — is
responsible for an average value over the four selected slea(overcast) locations of 39.1% (38.6%) of the total
number of water vapour DFS when all the 50 selected chanmelsansidered.

in clear sky is channel 3446 (centred at 1506.25 &mnwhile in overcast conditions is channel 3244
(centred at 1455.75 cm) to be mostly selected (over 25 out of 169 overcast locatiddste that IASI
channel 3244 — whose water vapour jacobian when a 1% hunmdiking ratio perturbation is consid-
ered peaks at about 300 hPa —is also selected at 16 out ofda85kly locations as the most informative
humidity-sensitive channel in clear sky and it is as wellrtiwst important water vapour channel selected
during the “main run” in p]. This confirms that IASI is most effective in estimating e=avapour in the
upper-middle troposphere even in clear sky conditions.

5.2 A strategy to select additional channels for all-sky dat assimilation

From sectiorb.1it follows that it is important to to determine how many tintes 50 channels selected
at a given clear-sky (overcast) location — regardless theliction ranking — are also selected at the
other 134 clear-sky (168 overcast) locations. Figl@shows the number of times (in percentage) that a
given channel is selected at the considered clear-sky dasgrlocations relative to the total number of
clear-sky (overcast) locations. The 24 humidity-sensitihannels that are selected over at least 40% of
the clear-sky (overcast) locations and that are also selemter at least 40% of the overcast (clear-sky)
locations are denoted in Figui® by red dots. These 24 channels — out of the 6750 (8450) najueni
channels that are selected at all the clear-sky (overcasd}ibns — accounting for about 3.5 DFS for
humidity at a given clear sky location, populate the finalreted selection shortlist. It is important to
note that other criteria may be used to select the final sétoafi n,., humidity-sensitive channels. For
example, it is possible to apply again the iterative chasakgdction procedure to thg,mm channels that
are selected both at clear-sky and overcast locations (withn > ni,) S0 as to pick thex,, common
channels that provide the largest DFS increments. A difficwith this strategy, however, is that the
DFS calculation should be performed by considering the @pjate forecast error uncertainty at each
relevant location and it may be difficult to account for thetfénat not all commome,mm channels are
selected at the same locations.

As discussed above, the importance of a selected chanrahdiepn both its selection frequengyover
the considered locations and the iteration gigfin %) in which the channel was selected — the earlier the
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Figure 10: The left (right) panel shows the channel selecfi@quency at the 135 (169) clear-sky (overcast)
locations. Selection frequency values are denoted withdatd for the 24 channels that are selected both in
clear-sky and overcast conditions among the set of chatinalsre selected over at least 40% of all clear-sky or
overcast locations.

step the more important the channel —, definef @s100x (nsej— li) /(Nsei— 1) wherenggjis the number

of selected channels (in this case 50) &nd the iteration in which channel i was selected. For example
li = 1 means that channel i provides the largest increase in DE&nagperature and humidity given the
previously selected — in this case 100 — temperature sansitiannels, leading to a value mfgiven by

pi = 100%. The ranking of the selected chaninislthen calculated as the the average betwigandp;.

A final rankingq; of the shortlisted channels (see Figddeand Table 1) can be obtained by calculating
the weighted average between the ranking of each channiglangky and in overcast conditions, where
the weights reflect the fact that the number of clear sky lonatin general (as in this case) differs from
the number of overcast locations in the considered casg. fod sake of illustration, let us calculate step
by step the final ranking for one of the shortlisted channgds,channel 2675. This channel was selected
at 68.89% (66.86%) of all clear-sky (overcast) locationd @ iteration step percentage averaged over
all considered clear-sky (overcast) locations was 67.4B8108%). This means that channel 2675 has
a weighted average selection frequency givenfioy: (135x 68.89+ 169 x 66.86)/(135+ 169) and

a weighted average iteration step percentage givep; by (135x 67.46+ 169 x 75.08)/(135+ 169
corresponding to a final rankirgy for channel 2675 given by = (fi +17)/2 = 69.73%.

In Figure1l2are shown the humidity jacobians for the channels listechld 1 calculated using RTTOV
v1l — with coefficients based on the LBLRTM line-by-line mbdeer 101 vertical levels — at a non-
isolated clear-sky location (i.e. surrounded by otherresf® columns) over the Mediterranean sea at
36.45° N, 17.5° W. It is interesting to note that channel 3248, charactdrizg a humidity jacobian
with the largest (in magnitude) peak at about 200 hPa, isdwest ranking channel, presumably due
to the signal-offsetting effects of its significant secaydpeak with opposite sign in the stratosphere
where the temperature gradient is positive. The relatilelyimportance of this channel may be used
as an objective justification for excluding the channel frthra shortlist, in addition to the practical
consideration that the assimilation of channels with disities over a wide range of heights may be
more challenging due to imperfect knowledge of verticabéarst error correlations.

Finally, it is also interesting to calculate the DFS weigpbtfunctions for the selected 24 channels, which
are shown in Figuré&3in the case when the atmospheric temperature and humiditgatd deviations
are and are not calibrated (see sec8pnA comparison between Figuré2 and13 shows that the width
of the region where the jacobians of the selected channelsigmificantly different from zero (between
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Figure 11: Spectral locations (indicated by coloured a&g) of a set of 24 humidity-sensitive IASI channels as
selected using the iterative, non-sequential channetsele procedure described in this work. The colour asso-
ciated to the marker used to show the spectral location oholéi reflects the ranking valug €pr that channel
(see text).
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Figure 12: Humidity jacobians — here defined as the vertigafifes of brightness temperature perturbations due
to a 1% water vapour volume mixing ratio profile perturbatienf the 24 selected channels listed in Table 1, at a
clear sky location.
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Table 1: Humidity-sensitive IASI channels selected udiegprocedure described in the text. The IASI channel
numbers in the left-most column shown in italic (bold) arerently operationally monitored (assimilated). See
text for a definition of channel ranking.

IASI channel number wavenumber (cm-1) channel ranking (¥@nking order

2675 1313.5 69.73 12
2868 1361.75 71.50 10
2939 1379.5 55.15 21
2959 1359.5 62.90 16
2991 1392.5 62.55 17
3002 1395.25 73.75 9
3009 1397 76.63 6
3064 1410.75 56.39 20
3093 1418 74.70 8
3105 1421 65.72 13
3244 1455.75 83.36 2
3248 1456.75 39.16 24
3252 1457.75 78.31 5
3312 1472.75 83.25 3
3321 1475 63.87 15
3411 1497.5 70.04 11
3446 1506.25 84.39 1
3453 1508 59.73 19
3509 1522 61.98 18
3527 1526.5 41.16 23
3575 1538.5 53.11 22
3580 1539.75 80.71 4
3653 1558 75.76 7
3658 1559.25 64.21 14
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Figure 13: DFS weighting functions (see text for their deffamis) for humidity and corresponding DFS values (for
the whole state vector) achieved by the 24 selected chalistel$ in Table 1 at a clear sky location for the non-
calibrated (left panel) and calibrated (right panel) foeet error standard deviation case. The black line shows
the humidity portion of the cumulative DFS weighting fuoicti

about 150 hPa and 800 hPa) coincides with that of the unasdifrcumulative DFS weighting function.

The calibrated cumulative DFS weighting function has alsovalar dependence with height, although
it becomes negligible above about 270 hPa due to both thd degline of the water vapour forecast
error standard deviation with height and the effects ofal#bcation, which reduce the magnitude of the
standard water vapour mixing ratio by more than 80% in theregbove 290 hPa.

6 Summary and conclusions

In this study the iterative channel selection method, wiéch standard use at operational meteoro-
logical centres to select an optimal subset of all availablennels from advanced infrared sounding
instruments for assimilation, was revisited in order t@sethannels with correlated errors (due to both
apodization and interference from contaminant speciésy asflow-dependent forecast error uncertainty
both in clear-sky and overcast conditions. Also, the stehdhannel selection figure of merit, defined

by the number of DFS expressed by the channels already estlpkts that of an additional candidate

channel, was modified so as to be able to be optionally useskfecting an optimal set of channels for

estimation of a portion of the state space, e.g., tropogphemperatures. To this end, the new concept
of (cumulative) DFS weighting function was introduced, @fhcan also be used to provide a synthetic,
nondimensional and normalized picture of the region of thtesspace from which is possible to extract
the (cumulative) contributions to the DFS expressed by argset of channels. Note, however, that the
“traditional” jacobians provide a measure of sensitivifylee radiation emerging from the atmosphere in
a given channel to infinitesimal variations of the state, wag that depends only on the characteristics
of the instrument and on radiative transfer processes andmthose of the estimation system (i.e., on
the observation and forecast error covariance matrica$fosestimation).

The observation-error-correlation-aware channel seleechethod discussed in this paper was then used
—in its standard figure of merit formulation — to select a §et@0 temperature-sensitive (below 900
cm~1) and 50 humidity-sensitive (between 900 and 2200 tto avoid solar and non-LTE contamina-
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tion) IASI channels, at a number of clear-sky and overcasttlons for a case study in July 2012. Care
was taken to select a final short-list of 24 humidity-sewsitthannels from the set of humidity-sensitive
channels that were selected both in clear-sky and overoasditons over at least 40% of all considered
locations. Finally, a ranking of the shortlisted channeds\wrovided, based on their selection frequency
and average selection iteration step. Future work will $tigate the potential of an all-sky assimilation
of (a subset of) the selected humidity-sensitive IASI clesion improving the ECMWEF forecast skill
scores over suitable case studies.
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