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Verification of extreme weather events: Discrete predictands

Abstract

Forecasting severe weather is one of four main goals in the ECMWF strategy 2011-2020. In this re-
port we evaluate the forecast performance for extreme events of temperature, wind speed and precip-
itation, all verified against SYNOP observations. We compare the high-resolution forecast (HRES),
the ensemble control forecast (CTRL)and the ensemble forecast (ENS). We focus on the frequency
bias, the SEDI score and potential economical value.

Comparing the evolution of the SEDI score for three different percentiles since 2002, we found
that SEDI for the 98th percentile has improved more over the past 10 years than the 50th and 80th
percentile, with the clearest result for 7-day temperatureforecasts. This indicates that forecasting
extremes have benefited even more from improvements in the forecast system (data assimilation
and model) than the forecasting of more average weather. We acknowledge that for many places
and parameters the 98th percentile cannot be classified as severe. However, sample size for higher
thresholds is not sufficient to give robust results. For really extreme/severe events (with return periods
of several years), we believe that one has to look into each specific case.

1 Introduction

Forecasting severe weather is one of four main goals in the ECMWF strategy2011-2020. Severe weather
appears in many shapes such as wind storms, precipitation, thunderstorms,heat waves and cold spells and
these meteorological conditions lead to floodings, forest fires, low air quality events etc. To evaluate the
usefulness of forecasts for severe weather, suitable verification measures are needed as well as reliable
data of the outcome of the event (observations).

Events can be defined based on absolute thresholds (e.g. gale-force winds) or the degree of severity
compared to climatology (e.g. wind speeds above the 99th percentile). While theabsolute value may
be more relevant with respect to damage, the percentile-based definition is useful for producing spatially
or seasonally aggregated scores, since by definition the number of events becomes comparable between
different regions and seasons. An additional reason for choosing apercentile threshold is that the actual
impact of an event of given absolute intensity in a certain region will dependon how often it occurs in that
location, as this will influence the degree to which the natural environment, buildings and infrastructure
are adapted to it. In any case, the choice of specific thresholds involves acompromise. A high threshold
is more targeted to rare events but at the cost of a small sample, while a low threshold may provide more
reliable statistics but fails to distinguish the skill in forecasting extreme weather from the more general
skill of the forecast.

In 2010 a report about verification measures was delivered to the Technical Advisory Committee (TAC).
The report discussed, among others, verification of severe weather and it was noted that WMO does
not provide guidelines for the verification of severe weather events. The report recognised the issue
that temporal and spatial resolution of observations may be insufficient for routine verification of severe
events. The project also discussed different metrics based on hits, misses and false alarms. A variety of
scores was available (see e.g.Stephenson et al.(2008) for a review), but none of the measures available at
the time satisfied all of the outlined requirements for verification of rare events. However, since the TAC
report, the symmetric extremal dependency index (SEDI) has been developed byFerro and Stephenson
(2011) to address some of the shortcomings of previous scores (hedging and base rate dependence). It has
subsequently been used to verify precipitation forecasts from UK Metoffice and ECMWF (North et al.,
2013).

A basic measure of forecast quality is whether the model is able to simulate the events of interest with
the correct frequency. This aspect is evaluated using the frequencybias of the events. Here the local
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conditions (orography and surface characteristics) at the observation station play a role, as the direct
model output is representative of the grid scale rather than a specific location.

The current (supplementary) headline score for severe weather is theROC area calculated for the Ex-
treme Index Forecasts (EFI). For the verification, the event is defined as extreme if the observed values
is above the 95th percentile. The evolution of the ROC area since 2004 can be found in Figure 34 in
Richardson et al.(2013). One drawback of this verification is that the EFI is an index and is not sup-
posed to directly correspond to a specific percentile. InGhelli and Primo(2009), precipitation forecasts
from ECMWF were evaluated using the extreme dependency score (EDS). In this report we extend the
investigation to temperature and wind speeds, using the SEDI score as well as the Potential Economic
Value (PEV) (Richardson, 2000), together with an evaluation of the frequency bias for extreme events.

2 Definition of verification scores

Many scores that are considered for severe weather are based on binary events, by simulating a decision
made from a forecast. The event could be defined either as exceeding aspecific absolute value of a
physical quantity, or exceeding a percentile of the climate distribution. The binary decision (yes/no)
could come from a deterministic forecast or use a probabilistic forecast (action is taken if the probability
is higher than a specified value) as a basis for the decision. Paired with the observed outcome, the
forecasts represent four types of verification events (hits, misses, false alarms and correct negatives),
forming a 2x2 contingency table (Table1).

Obs. Yes Obs. No

Fc. Yes a b
Fc. No c d

Table 1: 2x2 Contingency table

From Table1, the frequency bias is defined as

FB =
a+b
a+c

(1)

which is the ratio between the number of forecasted and observed events.A value larger than 1 means
the event is overforecast, and a value below 1 means it is underforecast.

2.1 SEDI score

Several scores to evaluate the forecast quality based on Table1 are available (threat score, equitable threat
score, Peirce skill score, Heidke skill score, etc.). A common problem for many of these measures is that
they degenerate to trivial values for rare events (either converging to 0or 1), when the correct negative
term dominates the outcome. For a review of the properties of different scores, seeStephenson et al.
(2008). In Stephenson et al.(2008) the extreme dependency score or EDS was introduced to overcome
the convergence problem. However, it was found that EDS encourages hedging (yielding a better score
for a system that over-forecasts an event) (Ghelli and Primo, 2009; Primo and Ghelli, 2009).
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In Ferro and Stephenson(2011) the symmetric extremal dependence index (SEDI) score was introduced.
The score is defined as

SEDI=
logF− logH− log(1−F)+ log(1−H)

logF + logH+ log(1−F)+ log(1−H)
(2)

where H is the hit rate defined as

H =
a

a+c
(3)

and F is the false alarm rate

F =
b

b+d
(4)

The SEDI score fulfils most of the desired properties. However, as pointed out inFerro and Stephenson
(2011), the forecasts have to be calibrated to a frequency bias equal to 1 before verification to produce
a score suitable for comparing different forecasting systems. This meansthat the results need to be
interpreted as potential rather than actual skill. We complement this metric with the potential economic
value, where such calibration is not required.

The calibration of SEDI is performed for each threshold independently, over 3-month (i.e. seasonal)
verification periods. Data from all stations in the verification domain (Europe) is pooled, which is nec-
essary to get a large enough sample, and made possible by the use of percentile thresholds. The actual
calibration is carried out iteratively by varying the percentile threshold applied to the forecast such that
the misses and false alarms (the off-diagonal elements of the contingency table) become equal.

2.2 Potential economic value

For ensemble forecasts one can construct 2x2 contingency tables for anumber of discrete probability
thresholds. In decision making, the probability threshold should be dependent on the cost-loss ratio of
the application. If the probability for the forecast exceeds this threshold,the forecast is considered as a
yes. One way to summarise the results from several probability thresholds isthe potential economical
value (Richardson, 2000). The score is building on a simple cost/loss model, where the event is connected
to a loss(L) that could be avoided bytaking an action which is associated with acost(C).

PEV(
C
L

) =
min(C

L , ō)−F C
L (1− ō)+Hō(1− C

L )− ō

min(C
L , ō)− ōC

L

(5)

The PEV is a function of the cost/loss ratio (C
L ) and is determined by the climatological occurrence of the

event (ō), the false alarm rateF (action was taken but proved unnecessary) and hit rateH (the loss was
prevented by the action). A zero value of PEV means that there is no benefit (relative to climatology) in
using the forecast as a basis for action, while a PEV equal to 1 means that one always takes the correct
decision about the action (perfect forecast).

The PEV is a function of the cost/loss ratio of an application. If the cost of preventing a loss is close to
the loss suffered in case of an event, it is rarely an advantage to use the information. In contrast, if the
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Figure 1: Potential economical value (PEV) for synthetic data for different probability thresholds (coloured lines)
and the maximum PEV (black line).

cost is small compared to the loss, the preventing action can be taken almost regardless of the forecast.
However, in between these extremes the forecast information can play a crucial role in optimising the
decision process. In many cases the cost/loss ratio will be a function of the forecast lead time, since the
cost of an early action may be different (typically less) than that of a late action. Early warnings could
therefore have a lower cost/loss ratio than forecasts issued closer to the event. By using an ensemble
system, which is able to produce different probabilities for an event, one can use different probability
levels for applications with different cost/loss ratio. However, the difficultywith PEV is for the user
to know the cost and the loss of their application. Another limitation is that the costor loss may be
dependent on the decision history (e.g. too frequent cancellation of trains leading to a change in travel
habits). In spite of these limitations of the cost-loss model we nevertheless consider the PEV very useful
for quantifying the benefit of the forecasts for decision making.

For ensemble forecasts, the PEV is calculated for a set of probability thresholds (e.g. action is taken if
10%, 20%, .. 90% of the members have the event). The maximum PEV for the ensemble is determined
from the probability threshold with the highest PEV for each specific cost/loss ratio. This is illustrated
in Figure1 for synthetic data and an observed occurance ( ¯o) of 30%. For single, deterministic forecasts
the maximum PEV is equal to the PEV curve determined by the 2x2 contingency table for yes/no of the
binary event.

The procedure of maximising PEV from different probability thresholds also leads to an auto-calibration
of the frequency bias for the forecasts. If the model under-forecasts an event, the optimum probability
threshold is higher than for an unbiased system. In the case of a deterministicforecast, a frequency bias
will lead to shift in the PEV (towards lower cost-loss ratio for over-forecasting, and vice versa).
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3 Model description

In this report we verify the high-resolution foreacast (HRES) and ensemble forecast (ENS). Both are
based on the same data assimilation but the forecast models are using different resolutions.

Year Change

Nov 2000 TL511/L60 (HRES), TL255/L40 (ENS)
Jan 2003 Major data assimilation, cloud physics and convection changes
Apr 2005 New moist boundary layer scheme
Feb 2006 TL799/L91 (HRES),TL399/L62 (ENS)
Sept 2006 Revised cloud and surface drag scheme
Nov 2007 Major physics changes (see text)
Feb 2010 TL1279/L91 (HRES),TL639/L62 (ENS)
June 2011 Ensemble of Data Assimilations (DA variances and ENS pert.)
Nov 2011 New cloud physics and roughness length

Table 2: Major upgrades affecting the forecasting system since the year 2000.

Table 2 shows a list of major upgrades (not exhaustive) in the forecasting system at ECMWF since
2000. A comprehensive description of the changes between 2005 and 2008 is given inJung et al.(2010).
The changes in November 2007 (cy32r3) included a new formulation of convective entrainment, re-
duced vertical diffusion, and modifications to the gravity-wave drag scheme and is further documented
in Bechtold et al.(2008).

Results from the operational forecasts will be compared to results from ERA Interim (ERA-I). The
ERA-I reanalysis uses the forecasting system (both assimilation and model) that became operational in
September 2006, but with different resolution (Dee et al., 2011). The horizontal resolution is TL255, and
it has 60 vertical levels. One benefit of a ’frozen’ forecasting systemlike ERA-I is that it provides a
benchmark for operational forecasts and allows the effect of atmospheric variability on the scores to be
taken into account.

To calculate a reference model climate we use the reforecast dataset forthe ensemble system which has
been operationally produced since 2008. It consists of one unperturbed and four perturbed ensemble
members and is run once a week for initial dates in the past 20 years (18 years before 2012). The
sensitivity of the resulting model climate to choices in the reforecast configuration, and their effect on
the extreme forecast index (EFI), are discussed inZsoter et al.(2014). An important property of the
reforecasts is that they are always produced with the latest model cycle.

4 Verification data

For all forecast verification, a proxy for the true outcome is essential. Itcould be an analysis originating
from the data assimilation system, or observations. While the analysis is a gridded data set covering the
whole globe and easy to use, the major drawback is that the errors in the analysis are correlated with
errors in short-range forecasts and the analysis system shares some of the systematic error characteristics
of the forecasts (provided analysis and forecast are from the same model system). This is in particular
a problem for weather parameters near the surface (2-metre temperature, precipitation, 10-metre wind
speed), which are model generated quantities, as the forecast model and data assimilation model use the
same parameterisations.
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Figure 2: Cumulative distribution function of 2-metre temperature in July for the model (dashed) and observed
(solid) for Heathrow Airport (blue) and RAF Northort (green), both in western London, UK.

Ultimately the forecasts should be evaluated against observations. However, conventional observations
(SYNOP, radiosondes, aircraft) are point measurements and do not represent the same scales as the
model, which generates output as an average over the grid box. This is evident for severe weather
events that are small-scale (e.g. convective precipitation) and leads to representativeness errors when
comparing model data with observations. Another issue is to find a good match between the observed
and modelled quantities, e.g. for wind gusts. A third issue is the quality control of observations, which
becomes especially relevant for severe weather where the observations take extreme values. In data
assimilation advanced methods are used for observation quality control based on the difference between
short forecasts and observations (see e.g.Andersson and Järvinen(1998)). However, for verification
purposes, especially for surface variables, the risk is to discard correct extreme observations in cases of
bad forecasts or at stations where the representativeness mismatch is especially strong.

In order to illustrate the problem of observation quality control and representativeness, Figure2 shows
the cumulative distribution function (CDF) for 2-metre temperature at 12 UTC inJuly. The two stations
plotted here are Heathrow airport (blue) and the Royal Air Force base Northort (green), both located
in western London. In the figure also the model climates for each station derived from reforecasts are
also plotted. The model climate here is calculated from the reforecast data set, where we have used 4
ensemble members and 4 dates in July every year in a 18-year period (in total288 data points). The model
climate is valid for a 132-hour forecast and at 12UTC on the day. The climatology of the observations is
calculated for July 1980 to 2009 (about 900 data points in total), and the sametime of the day.

In this case the model climatologies are identical as both stations have the same nearest gridpoint. For
both stations the model underestimates the temperature during warm days; the 90th percentile for the
model is 23.5◦C, while for observations in Heathrow it is 26◦C. This could either be due to a model bias,
or limited representativeness of the observations; Heathrow has large airfields which probably warm up
more during sunny days than the grid box average. For Northort the tails (both on the warm and the cold
sides) are much longer than for Heathrow. This is unexpected as the stationsare close to each other and
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Figure 3: Cumulative distribution function of 10-metre wind speed in August for the model (dashed) and observed
(solid) for three stations close to Reading, UK.

both are airfields. Therefore one can suspect some errors in the observations contributing to the observed
climate for Northort. However, such a quality control is not trivial as the values are not unrealistic.
The SYNOP data available for this study has been subjected to a very simple quality control only, by
excluding values which are clearly unphysical.

As a second example, Figure3 shows the CDF for August from observations of the 10-metre wind speed
for 3 stations around Reading, UK, and the model climate for the nearest model gridpoint to the stations.
The first striking feature in the plot is the step-like function of the observedCDF. This is because wind
speeds are reported as integer numbers in SYNOP messages. This puts a limiton how accurately the
forecasts can be verified, but also leads to inaccuracies in the CDF. Onesolution (for the calculation of
the CDF) is to add a random number to each observation in order to smooth the distribution, but it has
not been used in this study.

The observed CDF differs among the three stations, while the model CDFs are much more similar. This
is mainly caused by local conditions around the observations stations. In thisexample, the station plotted
in red is Farnborough, which is located next to an airfield and is probably aless sheltered station than
the other two (Bracknell - blue, High Wycombe - green). The model CDF seems to agree better with
Farnborough than with the other ones. This likely implies an over-estimation of the grid box average it
is supposed to represent.

In this report we focus on the verification of precipitation, wind speed andtemperature against SYNOP
observations. While wind speed and temperature are instantaneous valuesthe precipitation is accumu-
lated over 24-hours. We define the lead time as the end of the 24-hour window (a 5-day forecast is
accumulated between day 4 and day 5). We will only discuss verification results from Europe (defined
as35N-75N, 12.5W-42.5E), where station density is high, but the same methodology can be applied to
other parts of the world with a sufficiently dense observation network. For2-metre temperature and 10-
metre wind speed about 1600 stations were available, for 24-h precipitation1100 stations. A weighting
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Figure 4: Value of the 98th percentile for 10-metre wind speed in August for southern Europe. Model climate
(shade) and observed climatology (dots).

function is used to account for geographical variations in station density (Rodwell et al., 2010). The ver-
ification methodology follows the one used inHaiden et al.(2012). The station climatology is calculated
separately for each calendar month.

5 Climatology of extreme events

Before we evaluate the predictability of extreme events we investigate systematicerrors in the forecasted
climatological distribution of such events. By climatology we refer to the full probability density func-
tion (PDF) for each point (observation station or model grid point). To sample the tails of the PDF, a
large number of observations (or forecasts) are necessary. To consider the seasonality in the PDF, the
climatology is estimated for each calendar month. The PDF will mainly be evaluated inits cumulative
form (CDF), where the cumulative frequency of the event below a certain threshold is considered. The
phrasing ”98th percentile” therefore referes to the value that is not exceeded 98 % of the time. Hence,
evaluating daily data, values above the 98th percentile will on average appear every 50th day in each grid
point.

Figures4 to 6 show the 98th (2nd in the case of cold temperatures) percentile from the modelclimate
(shaded) and observed climatology (dots). These plots highlight areas of differences between the mod-
elled and observed climatology. Obviously there are other regions in Europe which are of interest and
other times of the year that need further investigation. These plots merely serve as examples.

Figure4 shows the 98th percentile for 10-metre wind speed in August. Over the Alps the model gives
very low values of the 98th percentile. Observed values show a much larger variations in this region
than for the model. There are stations with more than 14 m/s as observed for the98th percentile, while
the model climatology gives values less than 4 m/s. The stations with high extreme winds are typically
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Figure 5: Value of the 98th percentile for 24-hour precipitation in August for central Europe. Model climate
(shade) and observed climatology (dots).

mountain stations, whereas nearby stations with a wind-speed climatology similar tothe model are usu-
ally located in valleys. Along the coasts the model underestimates the 98th percentile at many stations,
for example along the French Mediterranean coast. Here the climatology is sensitive to the land-sea mask
in the model. It is another example of a representativeness mismatch between the model and observation
scales. Nevertheless, in the evaluation performed here we included both mountain and coastal stations.

Figure5 shows the same as Figure4 but for 24-hour precipitation in August. Here the model generally
underestimates the extreme values of precipitation (still 98th percentile) over central Europe. This re-
sult is somehow expected as the model output is integrated over a grid box, while the observation is a
point measurement. This creates a discrepency during localized convective events. Another area where
the model underestimates the values is the northern side of the Alps, indicating an underestimation of
orographic rainfall enhancement in upslope-flow situations. During the floods in Central Europe in June
2013 this was the case and is discussed inHaiden et al.(2014).

For extreme values of temperature we have to consider both tails of the distribution (warm and cold
events). Figure6(a) shows the difference between the median (50th percentile) and the 2ndpercentile
for 2-metre temperature in January, verified at 12 UTC. The reason forplotting the difference to the
median is the large difference in mean values between northern and southern Europe. In general, the
difference between the median and the extreme percentiles is much less over sea than over land. For the
cold extremes the model in general underestimates the width of the cold tail of thedistribution, especially
over southern Scandinavia. This is an effect of strong inversions over snow, which are insufficiently
captured by the model, and which persist during the day at northern latitudes winter time because of the
lack of sunlight.

Figure6(b) shows the the difference between the 98th and 50th percentile of the temperature for southern
Europe in January. North of the Alps (and over the Balkans) the warm extremes are underestimated in
the model. This bias could be due to a weaker Foehn effect in the model compared to reality, but this
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Figure 6: Difference in values for extreme (2nd in the upper and 98th percentile in the lower panel) to the median
(50th percentile) for 2-metre temperaure in January. Modelclimate (shade) and observed climatology (dots).
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needs further investigation.

Figure7 shows the same as Figure6 but for July. Here the model underestimates the warm anomalies
during the summer while the cold anomalies are in better agreement. The problems with the warm
anomalies seem to be worst over southern Scandinavia where the modelled difference to the median is 6-
8 degrees while the observed differences for many stations are 10-12 degrees. Similar errors are present
over France and south-eastern England, where the observed variability is similar to the variability over
eastern Europe where the weather is more dominated by continental air masses.

Figure8 shows the evolution of frequency bias from 2002 to 2013 for the 98 percentile of 10-metre wind
speed (a), 24-hour precipitation (b) and 2-metre temperature (c). All data is valid for 12 UTC. In the
figure results are included for HRES (solid), CTRL (dotted) and ERA Interim (dashed) and 1-day (red),
4-day (green) and 7-day (blue) forecasts. In the absence of modeldrift the frequency bias should be
approximately constant with forecast range and, optimally, it should also beclose to 1. The reasons for a
frequency bias could be representativeness (model resolution) and/or model errors. As already discussed,
large representativeness errors may occur in the presence of steep orography for wind speed, but also
surface characteristics (e.g. closeness to sea and surface roughness) around the station play a significant
role. ERA-Interim is using a fixed forecasting system throughout this period; hence its variability with
respect to the frequency bias mainly reflects atmospheric variability. It should be noted that 10-metre
wind speed and 2-metre temperature are not prognostic model variables but are interpolated to represent
the measurement height (2 and 10 metres respectively), which is an additional source of uncertainty.

For 10-metre wind speed (Figure8a), HRES, CTRL, and ERA-Interim all over-forecast the extreme
winds for the main part of the time-series. The frequency bias was similar forall three forecasts around
2007, when HRES and CTRL used the same model physics as ERA-Interim. In June 2011, the roughness
length was modified in the model, targeting the positive wind bias; this led to a markedimprovement of
the frequency bias in HRES and CTRL. For both forecasts the frequency bias is similar for different lead
times, indicating no severe model drift with regard to wind speed.

In the case of 24-hour precipitation, the frequency bias is generally negative for the 98th percentile. An
interesting feature here is the spin-up in the model during the first days. For ERA-I the frequency of
the event during the first day of integration is much lower that for longer lead times. For HRES the
opposite holds true since 2009, the event is more frequent during the first day and then the frequency
decreases. For the 95th percentile (not shown), the precipitation is over-forecast during the first day and
for longer lead-times the bias is small. Such a spin-up in the model can be due to the interaction between
the data-assimilation and the forecast model.

For 2-metre temperature a large variability from year to year is present. Thevariability is also present
for ERA-I, suggesting that it is due to the interannual variability, where e.ga mild winter could have a
different bias from a hot summer, even if both falls into the same percentile.

6 Forecast skill

Before we start to discuss longer-term verification results, we will give an example of forecast verification
for one particular day. Figure9 shows hits (green), misses (red) and false alarms (blue) for 10-metre
wind speed valid 28 October 2013 12 UTC. The figure also includes the mean-sea-level-pressure for the
forecast (black contours) and the analysis (blue contours). The forecast was initialised 2.5 days before
(+60h). The forecast is here, for the purpose of illustration, verifiedagainst the analysis. The top panel
shows verification of an event defined as wind speed greater than 16 m/s,while the bottom panel uses
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(a) 50th-2nd percentile (northern continental Europe and southern Scandinavia)
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Figure 7: Difference in values for extreme (2nd in the upper and 98th percentile in the lower panel) to the median
(50th percentile) for 2-metre temperaure in July. Model climate (shade) and observed climatology (dots).
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(a) 10-metre wind speed

24−h Precipitation, 12UTC run, Europe, 98%
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(b) 24-hour precipition
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Figure 8: Time-series for 2002-2013 (1-year running mean) of frequency bias for 98th precentile over Europe.
HRES(solid), CTRL(dotted) and ERA Interim (dashed). Different lead times in different colors.
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Figure 9: Example of hits (green), misses (red) and false alarms (blue) for forecasts valid 28 October 2013 12z.
The forecasts are verified against the own analysis.
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the 98th percentile of the model climate derived from the reforecast data set for October. The threshold
16 m/s corresponds to the 98th percentile of the model climate over the North Sea.

On this day, a severe storm (Christian) hit the countries around the North Sea. In the forecast, the centre
of the cyclone was somewhat shifted to the west, leading to false alarms to the west and misses to the
east. Comparing the two different events (16 m/s vs. 98th percentile), usinga fixed absolute threshold
(16 m/s) leads to exceedence of the threshold mainly over sea, while definingthe event relative to the
model climate gives signals also over land. Because of this property, we willuse the relative threshold in
the rest of the report.

6.1 SEDI score

Figure10 shows the SEDI score as a function of the evaluated percentile, for 4-day forecasts. As de-
scribed above, SEDI is designed to not explicitly depend on the base rate.Therefore a change in SEDI
for higher percentiles reflects an actual change in the ability of the forecasting system in predicting such
events. However, we have to bear in mind that the uncertainty in the score increases with decreasing
sample size. In general, the SEDI decreases with more extreme events (higher percentiles), and it does
so more rapidly for percentiles above the 95th. It seems like the behaviour for the 95th percentile is still
in the ”comfort zone” of the forecast system, while for higher percentilesthe skill deteriorates consider-
ably. This is especially true for 2-metre temperature. In order to verify the forecasts for extreme values
outside this comfort zone, we will subsequently mainly focus on the 98th percentile.

In the figure, results for the HRES (red-solid), ENS control (red-dashed) and ERA-I (blue-solid) are
included. Comparing HRES and CTRL, HRES is noticeably better, as expected for all parameters and
percentiles, but the difference does not seem to increase with more extreme events. The difference
between those two (which is solely due to difference in model resolution), is smallest for precipitation
and largest for temperature, which is a somewhat unexpected result. Comparing HRES and ERA-I, the
difference between the two increases with higher percentiles for temperature, but is close to constant for
the other two parameters.

Figure11 shows the SEDI score for the 98th percentile for July 2011 to June 2013 as a function of lead
time. As expected the skill of the forecasts decreases with incresing lead time.The skill is worst for 10-
metre wind speed, while for short-range forecasts the precipitation has thehighest SEDI and for long lead
times the best forecasts are for 2-metre temperature. The reason for the best performance for precipitation
for short forecasts is probably because the precipition is an accumulatedquantity over 24-hours while
the wind speed and temperature are instantaneous values. For temperature, all three forecasts have some
skill also for 10-day forecasts (the score is 0.3 for HRES), which is a sign of long-range predictability
for heat-waves.

Comparing HRES and CTRL, the largest impact of the resolution is seen for 2-metre temperature (as also
seen in Figure10). This holds true also for ERA-I compared to HRES and CTRL. Having the largest
resolution dependence for temperature forecasts is again somewhat unexpected, but could be due to how
well coastlines and mountain areas are resolved.

Comparing the scores for a lead time of 0 days, we can compare the difference between the operational
HRES analysis and the ERA-I reanalysis. The difference is smallest for precipitation where the ERA-I
forecast for the first 24 hours is as good as HRES forecast accumulated between 24-48 hours. As seen
in the frequency bias, HRES and ERA-I have different kind of spin-upbiases for precipitation, with
too little precipiation for ERA-I and relatively too much for HRES during the first forecast day. For
wind speed, the ERA-I reanalysis has the same SEDI score as a 3-day forecast from HRES. For 2-metre
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Figure 10: SEDI score from July 2011 to June 2013 as function of verified percentile for 4-day forecasts. HRES
(red-solid), CTRL (red-dashed) and ERA-I (blue-solid).
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Figure 11: SEDI score from July 2011 to June 2013 as function of forecast lead time for the 98th percentile.
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temperature, the difference is largest and the ERA-I reanalysis is not better than a 4 day forecast from
HRES.

Figures12-14 illustrates to what extent forecast skill has improved over time. For the long-term devel-
opment of the upper-air scores and the other scores for surface parameters, we refer toRichardson et al.
(2013) andMagnusson and K̈allén (2013). The panels show time-series from 2002 to 2013 of the dif-
ference in SEDI between HRES and ERA-Interim for three percentiles (50th, 80th and 98th). These
three percentiles represent the change in skill for the median, one-in-five-day events, and one-in-fifty-
day events. A positive value indicates that HRES is better than ERA-Interim. In general the scores are
better for HRES than ERA-Interim for all years (because of the higher resolution), and the operational
forecasts improves over time compared to ERA-Interim due to increasing resolution and model improve-
ments. Any trends in the difference between HRES and ERA-Interim are superimposed on considerable
inter-annual variability which increases with lead time and percentile.

For wind speed, we see a large interannual variability for the differencein SEDI for day 7, which is not
present for day 1 and day 4. The feature is present for all three percentiles but is most apparent for the
98th. The feature is strongest in 2007-2008. For these years, the observed frequency was higher than
normal (not shown), which could affect the predictability.

Figure13 shows the same as Figure12, but for 24-hour precipitation. Here the improvement with time
is less than for the 10-metre wind. In general the difference to ERA-I is smallest for the short-range
forecasts. One exception is in 2010 for the 98th percentile when the 7-dayforecast shows the lowest
difference. This coincides with a temporarily higher frequency for the event.

For temperature (Figure14), the first 3 years of the time-series show no difference for HRES and ERA-I
for 7-day forecasts, but a positive difference for the earlier lead times. However, during the last year
(2012) the 7-day forecast shows the largest difference to ERA-I and has hence experienced the greatest
improvement over the last 10 years.

A general conclusion from these plots, although the results are noisy, is that over the past ten years SEDI
has improved faster for the 98th percentile than the 50th and 80th percentile.Hence, the forecasts for
extremes seem to have benefitted at least as much from the model and data assimilation changes as the
general forecast.

6.2 Results on potential economic value

As a more user-orientated verification, we will in this section show the potentialeconomical value (PEV).
In the end of the section we present a comparison between different centres for this measure. The PEV is
calculated for each cost/loss ratio and is plotted as a function of the ratio. Having a PEV value above zero
means that there is an economic gain in using the forecast instead of knowledge about the climatology
of the event, for a certain cost/loss ratio. A value of 1 corresponds to the economical gain if the correct
decision was always taken. For a deterministic forecast, the highest PEV isexpected to occur at the
cost/loss ratio which corresponds to the base rate of the event. Hence, for a rare event, the cost of
action has to be much less than the potential loss, in order to gain anything fromthe forecasts (otherwise
numerous false alarms will cause large costs).

By using PEV as a measure we can directly compare the value of an ensemble forecast with that of a sin-
gle, deterministic forecast. By comparing HRES and CTRL the additional valueof higher resolution can
be evaluated. Comparing CTRL and ENS the effect of probabilistic forecasts compared to deterministic
forecasts is shown and comparing HRES and ENS the we have both effects. One question here is if the
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Figure 12: Time-series from 2002 to 2013 of the difference inSEDI between HRES and ERA-I for 10-metre wind
speeds.
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Figure 13: Time-series from 2002 to 2013 of the difference inSEDI between HRES and ERA-I for 24-hour precip-
itation.
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Figure 14: Time-series from 2002 to 2013 of the difference inSEDI between HRES and ERA-I for 2-metre temper-
ature.
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Figure 15: Potential economical value for the 98th percentile (2nd percentile for cold temperature) between July
2011 and June 2013. The plotted forecast lead times are 1 (red), 4 (blue) and 7 (green) days. The plotted forecasts
are HRES (solid), CTRL (dotted) and ENS (dash-dotted).

gain in using an ensemble is larger than the loss due to its lower resolution.

Figure15shows the potential economic value for the 98th percentile (2nd percentile for cold temperature
event) for forecasts from July 2011 to June 2013. In these plots we compare HRES, CTRL and ENS. For
all variables and lead times the PEV benefits from the ensemble information (ENScompared to CTRL).
The difference is smallest for temperatures and largest for precipitation.One unexpected result for the
precipitation verification is the better result for CTRL compared to HRES for day 4 and 7. One could
speculate that the higher resolution brings more details in the forecast that might decrease the score for
long lead times.

For temperature, the PEV is better for warm extremes than cold extremes at day 7. The reason for this
has to be further investigated but one would expect that issues with stronginversions during wintertime
could be a reason for the lower skill with respect to cold extremes. For bothtemperature extremes the
HRES has a non-zero PEV for higher cost-loss ratios than ENS. The ENSdoes not improve the upper
cost/loss limit for temperature as it does for wind and precipitation.

Figure16 shows PEV for three lead times for 4 different forecasting centres (ECMWF - solid, JMA -
dashed, UKMO - dash-dotted and NCEP - dotted). The upper panel shows the results for HRES forecasts.
For Day 1 and Day 4 UKMO has a higher PEV than ECMWF for low cost/loss ratios while the opposite
holds true for higher ratios. One explanation for the difference is the discrepancy in frequency biases
between the centres. As seen in Figure8, ECMWF has a negative frequency bias for the 98th percentile.
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(b) 24-hour precipition ENS

Figure 16: Potential economical value for different forecast centres for the 98th percentile between July 2011 and
July 2013. The plotted forecast lead times are 1 (red), 4 (blue) and 7 (green) days.
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For UKMO the bias is positive. Overforecasting of an event favours lowcost/loss ratios where the cost for
an action is low and one can afford many false alarms, while underforecasting is favoring high cost/loss
ratios where few false alarms are desirable.

The lower panel in Figure16 shows the same as the upper panel but for the ensemble forecasts. Here
ECMWF has the best PEV for all cost/loss ratios and lead times. Here the effect of the frequency bias
is compensated by the choice of optimal probability threshold for a cost/loss ratio (a negative frequency
bias is compensated by having a higher probability threshold).

7 Conclusions

In this report we have evaluated the forecast performance for extremeevents of temperature, wind speed
and precipitation. Verification of extreme events is not straightforward as the sample size is small, and
scores have to be carefully chosen to be applicable to rare events. For verification of extreme events
one needs to define a threshold which could either be an absolute value or apercentile value relative
to climatology. In this report we have chosen the latter definition to allow the event to appear at all
grid points. We have mainly focused on the 98th percentile of the climate distribution, as a compromise
between sample size and degree of extremeness. However, it can be argued that the 98th percentile
can not be considered extreme, since on average such an event should occur once every second month
at each grid point (high impact events have rather a return period of morethan 10 years). For wind
speeds, for example, the 98th percentile represents approximately 8-10 metres per second for the main
part of Europe in November. Such a low threshold is needed in order to obtain robust statistics in our
verification.

We have compared the high-resolution forecast (HRES), the ensemble control forecast (CTRL) and the
ensemble forecast (ENS). We have also included forecasts run in the reanalysis project (ERA Interim).
While HRES, CTRL and ENS forecasts use the most recent model version (with lower resolution for
CTRL and ENS), ERA-I uses a frozen forecasting system from 2006 together with a lower resolution.

In this report we have focused on verification against SYNOP observations. However, observations con-
tain errors, originating from measurement errors (typing errors or instrument errors) and representiveness
errors. To detect measurement errors one needs to have some sort ofquality control of the observations.
In this report we have only used a simple quality control and we would like to highlight this as an area
for further work. The main challenge when verifying against observations that are point measurements
is the difference in scales represented by the observation and the model. The model is an area average
over a grid box, and with coarse model resolution large representativeness errors can occur.

As a zero-order metric of the ability to forecast extreme weather we have evaluated the frequency of
events. In order to predict an event it is crucial that the model can produce such an event with a frequency
similar to the observed one. This evaluation is useful to find systematic model issues and to recognize
current limitations in simulating extreme events. By studying maps of frequency biases for the 98th
percentile we highlighted a few potential sources for biases for extreme events. This type of map is
useful for evaluating local biases. The most problematic area in Europe isin the Alps, for all three
variables. Steep orography strongly affects the wind speed measured at ground as well as precipition
rates and the Foehn effect on the lee side of mountain ranges. Another issue is the underestimation of
extreme precipitation amounts from convective events.

Several metrics (scores) are available for verification. One category of scores are based on hits, misses,
false alarms and correct negatives of a particular event. Scores are designed to combine these four
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categories into meaningful metrics. We have focused on the recently developed SEDI score (after having
looked previously at the Peirce skill score and the equitable threat score). The advantage with SEDI is
that the score remains well-behaved for extreme events, when other scores tend to degenerate. However,
the main issue with the SEDI score is that if it is used on uncalibrated forecastsit favours a positive
frequency bias. For a fair comparison of different forecasts they have to be calibrated before calculation
of the score. The calibration adds complexity to the verification and removes part of the error such that
the result needs to be interpreted as potential skill.

We have also used the potential economic value, PEV (Richardson, 2000), which is based on a simple
decision model. The PEV is a function of the specific cost/loss ratio for an application. If the cost for
preventing a loss is close to the loss of the weather event, it is rarely an advantage to use the information.
In contrast, if the cost is small compared to the loss, a preventing action can be taken regardless of the
forecast. However, inbetween these extremes the forecast information can play a role in optimising the
decision process. The cost/loss ratio for a user could be a function of theforecast lead time, if the cost for
an early action is different (in many cases less) than a late action. By using aensemble system, which is
able to produce different probabilities for an event, one can use different probability levels for different
lead times.

Comparing different resolutions, our results show the largest impact of resolution on 2-metre temper-
ature. One could speculate that the higher resolution improves land-sea contrast and the agreement
between model topography and station height. Recent findings pointing towards filtering of the model
orography might also play a role here (Sandu et al., 2014). The difference in scores between the resolu-
tions also impact the PEV scores for ENS, which for some cost-loss ratios are lower than HRES.

The scores are in general lowest for 10-metre wind speed. For this parameter we have seen that local
conditions around the stations have a large influence and the representativeness uncertainty is high. For
short forecasts (1-3 days) the highest scores are found for precipitation while for medium-range forecasts
(day 3-10) the temperature has the highest scores. One reason for thiscould be that precipitation is
accumulated over 24 hours and therefore the timing error is to some degree filtered out. A smaller
contributing factor is that what we call a 1-day forecast is accumulated over the first 24 hours of the
forecast, making the effective lead time of the forecast shorter.

Comparing the evolution of the SEDI score for three different percentiles(50th, 80th and 98th), we
found that SEDI for the 98th percentile has improved more over the past 10years than the 50th and 80th
percentile. This indicates that forecasting extremes have benefitted even more from improvements in the
forecast system (data assimilation and model) than the forecasting of more average weather.

We have also compared PEV for forecasts from different centres. Wefound for precipitation and the
deterministic models, that UKMO had higher PEV for low cost/loss ratios, while ECMWF had higher
PEV for high cost-loss ratios. This characteristic can be traced back to different frequency biases. The
PEV is a hedgable score, and overforecasting an event (positive bias) is favourable at low cost/loss ratios
while underforecsting is beneficial at high cost/loss ratios.

As PEV is hedgeable (not a proper score), it is not suitable for use without any additional score. The
strenght of the score is that it demostrates the usefulness of the forecast for different types of applications.
The SEDI score would also be hedgeable if one would not apply a bias correction. Used on calibrated
forecasts it becomes a score for potential skill and does not contain information about systematic over-
or underforecasting. So for both scores the frequency bias is a necessary and useful complement. Ideally
one would like to have a score which does not degenerate for extreme events and at the same time is not
hedgeable.
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Good predictability at longer lead times for temperature is expected as it is connected to large-scale
patterns. Future work will focus on predictability of heat waves and cold spells, which are events that
appears over extended periods (verification of several days together is of interest).

In the time-series of the difference in SEDI between HRES and ERA-I we saw that some of the evolution
in difference (especially for day 7), were apparently dependent on the observed frequency of the event.
For periods with a higher than normal frequency, the 7-day forecasts scored better compared to ERA-I.
One could ask the question whether this is a property of the score or whether the HRES model is a better
model under such circumstances.

Except from the removal of frequency bias used for the SEDI score,we have not attempted to do any
calibration. We expect that a more sophisticated calibration will improve the forecast skill. This could
be done by using the reforecast data set. Ongoing work at ECMWF will explore this topic.

In this report we have focused on scores based on hit and false alarmrates. Future work will include
more probabilistic verification. One possibility here is to use a modified version of the continuous ranked
probability score (CRPS), where a function is applied to give more weight toextreme events.

Finally, we acknowledge that for many places and parameters the 98th percentile can not be classified
as severe. For really extreme/severe events (with return periods of manyyears), we believe that one has
to look into specific cases to investigate the model characteristics. Hopefully,such case studies would
bring more general model issues to light.
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