Volcanic plume modelling and assimilation with the global MACC system (with emphasis on SO$_2$)

Johannes Flemming,
Antje Inness, Angela Benedetti & Jean-Jacques Morcrette
Introduction

- How can we use timely observations in combination with data assimilation for initial values to improve the MACC forecasts of volcanic eruptions?

- Eyjafjallajökull eruption in 2010 set the agenda
 - The MACC data assimilation system needs to be improved to be able to assimilate plume observations (retrievals)
 - Estimates of injection profile and emission rate are essential for reasonable forecasts

- MACC makes forecast and analyses volcanic aerosol and volcanic SO$_2$ using the Integrated forecasting system (IFS) of ECMWF (4DVAR, NWP forecasting model with a semi-lagrangian advection scheme)
First Attempts …in April 2010

• MODIS AOD north of 60N blacklisted
• No volcanic aerosol tracer
• No assimilation of volcanic SO$_2$ retrievals
• Forecast runs with arbitrary emissions

Figure 1: Sea salt plume off the coast of Iceland on April 19, 2010 at 030UTC.

from Benedetti et al. 2012
Recent Developments: Forecast and Assimilation of volcanic Ash and SO$_2$ Plumes

- Assimilation of MODIS AOD to change proportionally modelled aerosol species
 - Introduce volcanic aerosol model (new)
 - Relax quality criteria to not filter out volcanic signal

- Assimilation of middle-trop to strat UV SO$_2$ retrievals
 - Volcanic SO$_2$ model field and loss terms
 - Optimise DA for plume assimilation (specific background error statistics, variable transformation)

- Method to estimate injection height and emission flux from UV SO$_2$ retrievals
Parameter Estimation and Data Assimilation for SO₂ Plume Forecasts

- What are can be inferred from satellite SO₂ retrievals to make (good) SO₂ plume forecast?
 - Initial conditions (DA)
 - Emissions flux (PE)
 - Injection profile (PE)
 - SO₂ life time (PE)

- Are the SO₂ retrievals providing the required information?

- How important is meteorological forecast error and realism of model transport by the IFS?

- How to represent uncertainty?

- Test cases: 2011 Grímsvötn and 2010 Eyjafjallajökull erruption
Spatial and temporal Coverage – Total Column SO$_2$ retrieval

- **GOME-2**: GOME2 20100507
- **OMI**: OMI 20100507
- **SCIAMACHY**: SCIA 20100507

- Good coverage essential (GOME-2 is best)
- No night time retrievals for UV instruments
- No vertical information
High TCSO2: OMI vs GOME-2 vs SCIA

Gridded observations
OMI tends to have highest maxima

Grimsvoetn 2011
Variability of observed SO$_2$ Burden used to estimate Emissions

SO$_2$ Burden 4000 km around Iceland

2009 SO$_2$ burden

2010 SO$_2$ burden

2011 SO$_2$ burden

2009 SO$_2$ burden delta

2010 SO$_2$ burden delta

2011 SO$_2$ burden delta

Total SO$_2$

Delta SO$_2$

No eruption Eyjafjallajökull Grimsvötn
SO$_2$ Lifetime Estimate from SO$_2$ Retrievals

- Use reduction of observed SO$_2$ burden to estimate lifetime after end of eruption

 - “GOME-2 Lifetime” : 15 days
 - “OMI-Lifetime” : 9 days
 - No really exponential loss
 - According to exponential loss obs have too low SO$_2$ in the concentrated plume at the start

\[
\text{SO}_2 \rightarrow \text{SO}_4
\]
\[
d\text{SO}_2/dt = -k \text{ SO}_2
\]
\[
\text{SO}_2(t) = \text{SO}_2(0) \exp(-t/\tau)
\]
Emission and Injection Height Estimate using Ensembles of Tracers

- Simulate test tracers with fixed emission rate (1t/s) injected at different levels up to 24 h before observation
- Find best overlap of test plume with plume observations (1DU)
 - Identify plume height by plume locations (wind shear)
- “scale” fixed emissions to fit observations in “best” test plume
 - Minimise area to calculate burdens (only area covered by test plumes)
- Refine temporal resolution of estimate with test forecast 18/12/6 h before observation time, if possible
Test Tracer Grimsvötn

Eruption start
19 UTC 21.5.11
Emissions Flux and Injection height - Grimsvötn

Reasonable agreement with plume top height observations from radar

Using GOME-2

Estimate after 28.5 is artefact caused by plume returning to Iceland
OMI and SCIA estimates more “jumpy” than GOME-2
Larger differences with IASI based estimate by Heard et al. 2012
Data Assimilation of volcanic SO$_2$ (GOME-2)

- Emissions flux in assimilating model yes – no
 - DA was good in producing plumes but not correcting wrong plumes
- With log-Jb and Normal Jb
 - Log-Jb required existing plume to be amplified
- “External” plume height information needed to locate plume vertically
- Final setup for SO$_2$ plume assimilation
 - Normal Jb
 - minimum > 0.1 DU, no thinning
 - increased background error variance at height of plume – obtained from plume height estimate
 - 100 km horizontal length scale
SO$_2$ Analysis Examples

Log-Analysis not “over dispersive” but too high and dependent on a plume in background
Analysis exaggerate plume extent
Initial Conditions vs. / and Emission Parameters

- SO$_2$ forecasts for 2011 Grímsvötn and 2010 Eyjafjallajökull
- Forecasts configurations:
 - **EMI**: Forecast with SO$_2$ source parameter (also for duration of forecast)
 - **INI**: Forecast with SO$_2$ analysis (GOME-2) as initial conditions only and no SO$_2$ source term (INI)
 - **INIEMI**: Forecast with SO$_2$ analysis as initial conditions and estimated SO$_2$ source terms
- Daily 12 UTC Forecast over 120 h, T511L60, Mass fixer applied
- Evaluated with GOME-2 - How good can we forecast tomorrow TCSO2 plume using today's TCSO2 retrievals?
- *(NOTE: EMI is not a NRT scenario because we don’t know future emissions!)*
Eye-ball Plume Forecast Evaluation 2010
24 FC SO_{2} Plume Forecast Evaluation – 2011

Evaluation w.r.t to gridded observations (0.5x 0.25)

- Threshold based exceedance hits/miss/false alarm
- Plume size (w.r.t to threshold) independent of overlap
Forecast Lead Time 24, 72 & 120 hours

Quality of meteo forecast was very important for plume forecast
Meteorological Ensemble Forecast (T639L91 20 Members)

This diversity is specific of 2011 Grimsvoetn

120 h Forecast
6 of 20
Members
Same emissions

Parameter Estimation Workshop 2013
Different mass fixers

Model transport has difficulties to maintain the high observed values after the end of eruption.
Current Status of Response to Volcanic Eruptions with MACC system

<table>
<thead>
<tr>
<th>Automated, no intervention</th>
<th>NRT intervention (working hours)</th>
<th>1-2 day delay intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assimilation of OMI SO₂ retrievals prescribed heights</td>
<td>• Emit SO₂ and ash in model at volcano location using ad-hoc emission estimate</td>
<td>• Estimate SO₂ emission rate and injection height based on UV-VIS satellite retrievals</td>
</tr>
<tr>
<td>• Assimilation of MODIS AOD in existing aerosols</td>
<td>• Relax QC and reduce thinning for assimilated MODIS observations</td>
<td>• Rerun MACC system for eruption period with improved settings and emission estimates</td>
</tr>
<tr>
<td></td>
<td>• Active assimilation of TRM SO₂ retrieval (GOME-2, OMI)</td>
<td></td>
</tr>
</tbody>
</table>

MACC has no mandate to volcano forecast but the MACC products might be useful for VAAC etc.
Summary

- MACC Data assimilation system picks up automatically volcanic ash and SO$_2$ plumes if they are observed.
- The DA assimilation requires emission rate and injection height estimates (ash) or only injection height (SO$_2$) estimate.
- A method to estimate injection height and emission rate from SO$_2$ retrievals using an ensemble of test plumes has been developed.
- Combining emission estimate and initial value data assimilation provided best results for SO$_2$ plume forecasts.
- Uncertainty of meteorological forecast and SO$_2$ lifetime is less important than emission parameters but still influential.
- Ensembles of forecasts might be useful to express uncertainty of emission estimates, in particular after forecast start time.
References:

SO$_2$:

AOD:

Benedetti, A., J. W. Kaiser, J-J. Morcrette, R. Eresmaa and S. Lu (2011), Simulations of volcanic plumes with the ECMWF/MACC aerosol system, December 2011, ECMWF Technical Memorandum, 653,
MACC system – A global-to-regional forecasting system for atmospheric composition
Grimsvötn (21-24.5.2011 eruption) – well sustained plume for over two weeks