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Summary 

In this paper, a comprehensive assessment of the impact of radio occultation observations in the operational 
ECMWF assimilation and forecast system is presented using different diagnostic tools. In particular, the 
observation influence in the assimilation process and the related contribution on the short-range forecast error of 
radio occultation observations is evaluated with recently developed diagnostic tools based on the adjoint version 
of the assimilation and forecast model. The sensitivity with respect to observation error variances is also 
evaluated for the assimilated observations. GPS-RO results to have the largest mean influence among satellite 
observations in the analysis. It is the 4th satellite system for analysis information content and the 2nd largest 
satellite contributor together with IASI and AIRS to decrease the 24-hour forecast error. For the whole 
observing system, with the exception of radiosondes and polar atmospheric motion vectors, the forecast error 
sensitivity to the observation error variance indicates that a deflation of the assumed observation errors would 
improve the forecast skill. For radio occultation observations at all vertical levels, but predominantly between 10 
and 20 km, a deflation of the observation error variance is suggested. Interestingly, the sensitivity computation 
recommends reducing the assumed errors mostly in layers where the weight given to GPS-RO data is quite 
large. 

keywords: Radio occultation observations, observation impact, observation error variance, diagnostic tools 

 

1 Introduction 
The ECMWF four-dimensional variational system (4D-Var, Rabier et al. 2000) handles a large 
variety of both space and surface-based meteorological observations (more than 30 million a day) and 
combines the observations with the prior (or background) information on the atmospheric state. A 
comprehensive linearized and non-linear forecast model is used with more than 108 degrees of 
freedom. 

The assessment of the contribution of each observation to the analysis is among one of the most 
challenging diagnostics in data assimilation and numerical weather prediction. Furthermore, it has 
become increasingly difficult to demonstrate the impact of new observation types as the skill of NWP 
systems has improved. This study applies 4D-Var information content and adjoint-based diagnostic 
tools to focus on the impact of GPS radio occultation (GPSRO) measurements in the ECMWF NWP 
system. GPSRO measurements are now routinely assimilated at the operational NWP centres (e.g., 
Healy and Thépaut 2006; Cucurull et al. 2007; Aparicio and Deblonde 2008; Poli et al. 2009; Rennie 
2010). It has been demonstrated that they have a particularly good impact on upper-tropospheric and 
lower/middle stratospheric temperatures, even though the observation numbers are low compared 
with satellite radiances, accounting for only around ~3 % of the measurements assimilated. The 
present work complements recent ECMWF observing system experiments (Bauer et al. 2013), and 
simulations designed to investigate how the impact of GPS-RO scales with observation number 
(Harnisch et al. 2013).  The diagnostics used here quantify the influence of the GPS-RO on the 4D-
Var analysis, and how these measurements subsequently reduce the errors in short-range forecasts.  

The methods developed to quantify the observational influence (Purser and Huang 1993, Cardinali et 
al. 2004, Chapnick et al. 2004, Lupu et al. 2011, Cardinali 2013) show which part of the analysis is 
given by the observations and which is given by the background or pseudo-observations. They 
therefore provide an indication of the robustness of the fit between model and observations and allow 
some tuning of the weights assigned in the assimilation system. Measures of the observational 
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influence are useful for understanding the Data Assimilation (DA) scheme itself: the influence of the 
newest data assimilated, the influence of the background on the fit, the analysis change if one single 
influential observation is removed and the total amount of information extracted from the available 
data. It is therefore necessary to consider the diagnostic methods that have been developed for 
monitoring statistical multiple regression analyses (Tukey 1972; Wabba et al.1995); 4D-Var is, in 
fact, a special case of the Generalized Least Square (GLS) problem (Talagrand, 1997) for weighted 
regression thoroughly investigated in the statistical literature. 

For the forecast, the assessment of the forecast performance can be achieved by adjoint-based 
observation sensitivity techniques that characterize the forecast impact of every measurement (Baker 
and Daley 2000, Langland and Baker 2004, Cardinali and Buizza, 2004, Morneau et al., 2006, Xu and 
Langland, 2006, Zhu and Gelaro 2008, Cardinali 2009). The technique computes the variation in the 
forecast error due to the assimilated data. In particular, the forecast error is measured by a scalar 
function of the model parameters, namely wind, temperature, humidity and surface pressure that are 
more or less directly related to the observable quantities. The observation impact therefore depends on 
the metric used to compute the global forecast error. In this study the energy metric has been used. 

In general, the adjoint methodology can be used to estimate the sensitivity of the forecast with respect 
to any parameters of the assimilation system. For example, Daescu (2008) derived a sensitivity 
equation of an unconstrained variational data assimilation system from the first-order necessary 
condition with respect to the main input parameters: observation, background, observation and 
background error covariance matrices. In particular, the sensitivity with respect to the observation 
error variance offers guidance for tuning the variances. Recently, Daescu and Todling (2010) and 
Daescu and Langland (2013 (a) and (b)) have shown how the forecast sensitivity to the observation 
error variance can be computed and variances accordingly tuned. 

A general description of the tools used on the estimation of the observations performance is given in 
Section 2. Results on the observations impact in the ECMWF assimilation and forecast system is 
shown in Section 3, with particular attention on the impact of GPS-RO (radio occultation). The 
conclusions are provided in Section 4. 

2 Data Assimilation Diagnostic tools 
DA systems for NWP provide estimates of the atmospheric state x by combining meteorological 
observations y with prior (or background) information xb. A simple Bayesian Normal model provides 
the solution as the posterior expectation for x, given y and xb. The same solution can be achieved from 
a classical frequentist approach, based on a statistical linear analysis scheme providing the Best Linear 
Unbiased Estimate (Talagrand, 1997) of x, given y and xb. The optimal GLS solution to the analysis 
problem (see Lorenc, 1986) can be written 

 a n bx = Ky + (I - KH)x  2.1 

The vector xa is the ‘analysis’. The gain matrix K (n × p) takes into account the respective accuracies 
of the background vector xb and the observation vector y as defined by the n × n covariance matrix B 
and the p × p covariance matrix R, with 

                                                     
1 1 1 1T T− − − −K = (B + H R H) H R                                                   2.2 
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Here, H is a p × n matrix interpolating the background fields to the observation locations, and 
transforming the model variables to observed quantities (e.g. radiative transfer calculations 
transforming the models temperature, humidity and ozone into brightness temperatures as observed by 
several satellite instruments). In the 4D-Var context introduced below, H is defined to include also the 
propagation in time of the atmospheric state vector to the observation times using a forecast model. 

The analysis state is hence defined as a sum of the background and the observations y, weighted by 
matrices I - HK and HK , respectively. For each unknown component of x, there are two sources of 
information: real observations and ‘pseudo’ observations, representing prior knowledge provided by 
the background xb.  

The analysis sensitivity with respect to the observations is a function of KT (Cardinali et al 2004, 
Cardinali 2013). In particular, the sensitivity trace is the Degree of Freedom for Signal (DFS) and the 
complementary one is the Degree of Freedom for Background (DFB). The total observation influence 
in the analysis is provided by the DFS. The DFS is hence modulated also by the observations number.  

In 2000, Baker and Daley derived the sensitivity of the forecast error to the assimilated observations. 
Langland and Baker (2004) complemented the equations with a measure of the forecast error 
reduction due to the assimilated observations. The Forecast Error Reduction (FER) depends on the 
forecast error, KT , the innovations vector (y-Hxb, H is the non-linear operator) and the observations 
number. Since the forecast error is computed as the difference between the 24-hour forecast and the 
analysis valid at the same time, some important considerations must be done: The verifying analysis is 
only a proxy of the truth, thus, sub-optimal verifying analysis can under-estimate the observation 
impact. Moreover, the impact can be under-estimated in presence of forecast model errors. The 
forecast error sensitivity depends on the metric used for the global forecast error computation (all 
model levels are included in the calculation). The DFS is metric independent.  

Recently, Daescu (2008), Daescu and Todling (2010) and Daescu and Langland (2013 (a) and (b)) 
have derived and computed the sensitivity of the forecast error to the observation error variance. This 
measure depends on the forecast error, KT , the residuals (y-Hxa) and the observations number. 
Observation error variance tuning in an operational assimilation system was also exploited by 
Chapnik et al. 2006. 

3 Results 
Analysis and forecast experiments using the ECMWF 4D-Var system (Rabier et al 2000; Janisková et 
al. 2002; Lopez and Moreau, 2005, Janisková and Lopez, 2013) have been performed for June 2011 
to assess the observations impact on the analysis and the forecast. All the observation types 
assimilated operationally at ECMWF for this period are included in Figure 1 in order to place the 
impact of GPS-RO in context. Figure 1a shows the DFS of all the observations assimilated. It can be 
seen that AMSU-A together with IASI radiances are the most informative data type, providing 21% of 
the total observational information; AIRS follows with 16%. The information content of Aircraft (9%) 
is the largest among conventional observations, followed by (TEMP radiosonde) and the in situ 
surface pressure SYNOP observations (~4%). Noticeable is the 7% of GPS-RO (4th in the satellite 
DFS ranking). In general, the importance of the observations as defined by the DFS agrees well with 
the recent data impact studies by Radnoti et al, (2010). 
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The 24-hour forecast error reduction (FER: Forecast Error Reduction) of all the observing system 
components is shown in Figure 1b. The largest contribution in decreasing the forecast error is 
provided by AMSU-A (~21%); IASI, AIRS, GPS-RO and Aircraft provide 10% of the forecast error 
reduction followed by TEMP and SYNOP data (5%). All the other observations contribute up to 3%. 
AMV observations from all the different platforms (MODIS, Meteosat and GOES) also contribute 
well to the 24 hour error reduction (6%). 

Comparing Figure 1a with Figure 1b is clear that the impact of the observations (by observation type) 
on the analysis (DFS) is quite similar to their impact on the forecast as measured by the forecast error 
(FER) reduction. Both measures depend on the transpose of the gain matrix KT, but the FER also 
depends on the forecast error and on the innovation vector. The amount of error reduction is 
modulated by the percentage of forecast error that projects on KT. For some observation types the 
DFS is larger than the reduction of the forecast error. The impact loss, noticed for some observation 
type e.g. IASI and AIRS, can depend on the observation quality or can be due to biases in the model 
that will prevent the analysis changes to affect the short-range forecast which will reflect on the 24 
hour forecast error increase. 

In Figure 1c, the sensitivity with respect to the observations error variance (FSR, Forecast Sensitivity 
to R) is shown for the same observation types. The positive sensitivities indicate that error variance 
deflation should be beneficial to reduce the 24 hour forecast error whilst inflation should be applied 
on observation error variance with negative sensitivity. According to Figure 1c all the variances 
should be deflated, apart from TEMP and AMV from MODIS and Meteosat. From Figure 1c, it is 
accurate to say that a larger assumed error for the background would potentially improve the short 
range forecast. It is worth to notice that the globally estimated mean observation influence is ~0.2 
(DFS devided by the total observation number) being therefore the mean Degree of Freedom for 
Background (1-DFB) equal to ~0.8. These values identify the background leverage on the fitting and 
suggest as well some potential for background error variances tuning (see also Cardinali 2013).  

In the ECMWF system, GPS-RO provides the 7% of DFS (Fig1a) and 10% of forecast reduction (Fig 
1b). The statistical significance of the measure is expressed by the error bars. The GPS-RO 
measurements mainly provide temperature information in the upper-troposphere and lower/middle 
stratosphere. They are assimilated as bending anglesα , as a function impact parameter a , which is a 
height co-ordinate using the one dimensional observation operator described by Healy and Thépaut 
(2006). The GPS-RO measurements complement the information provided by satellite radiances 
because they have better vertical resolution, and they can be assimilated without bias correction. The 
assumed GPS-RO observation error statistics  used in the assimilation of the data at ECMWF vary as 
a function of impact height z  which is defined as the impact parameter minus the “radius of 
curvature”, where the radius of curvature is the radius of the best spherical fit to the earth at the 
observation location. The assumed standard deviation of the bending angle errors ),(zασ  is 20 % of 

the observed value at z = 0 km, falling linearly with the impact height to 1 % at 10 km. Above 10 km, 
the errors are assumed to be 1 % of the observed value, until this reaches a lower limit of 3 micro-
radians. Vertical error correlations are neglected. This error statistic model is applied globally. Given 
the high observation accuracy, the mean GPS-RO observation influence in the analysis is also high 
(not shown), contributing to half of the DFS, the other half contribution comes from the relatively 
high measurements number assimilated.  
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Figure 1: Total amount of a) DFS, b) FER and c) FSR for the June 2011 and for all observation 
types assimilated 

 

Figure 2 shows the total information content DFS (Figure 2a) of GPS-RO data with respect to the 
vertical level measured in kilometers (2-50 km). The largest DFS is over the troposphere and the low 
stratosphere where is also observed the largest forecast error reduction. The number of measurements 
per level is the same. 

The GPS-RO DFS (Figure 2a) profiles are consistent with the earlier 1D-Var information content 
studies (e.g., Healy and Eyre, 2000), and reflect the large weight given to the observations between ~ 
10 – 20 km.  The largest forecast error reduction is also observed between 10 and 25 km (Figure 2b). 
These results are consistent with recent OSEs (e.g., Bauer et al. 2013) which show that GPS-ROs 
have the largest impact at this atmospheric region. Figure 2c shows GPS-RO observations sensitivity 
to the observation error variance. Generally, a deflation of the variances is suggested for all vertical 
levels and in particular between 10 and 25 km. It is interesting to note that the FSR computation 
suggests reducing the assumed errors mostly in the layer where the weight given to the GPS-RO is 
already quite large.  
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Figure 2: a) Total observation influence (DFS), b) total FER and c) FSR for June 2011 and for 
GPS-RO observations as a function of vertical levels 

A closer comparison of the three sources of information on the GPS-RO impact is provided in 
Figure3, where the vertical levels mean variation for June 2011 of DFS, FER and FSR is shown, 
respectively. In the middle to the upper stratosphere from 25 to 50 km, the information provided by 
the observations is less than the mean of all levels and a smaller (with respect of its mean) forecast 
error reduction is also noticed. Interestingly, there is a very small indication that a deflation of the 
observation variances on those levels would improve the impact in the forecast. Between 25 and 
20 km, whilst the GPS-RO contribution in the analysis is larger than the mean, only an average 
forecast impact is achieved and it is suggested (by FSR) that it would not change if the observation 
variances are deflated. A larger (than the mean) DFS contribution and larger forecast error reduction 
is obtained in the upper troposphere/lower stratosphere between 10 to 20 km. It is only in these layers 
that the FSR diagnostic tool strongly suggests that reducing the observation variances will increase 
the DFS and produce a forecast improvement. Below 10 km, the observation impact is very similar to 
the one on the top atmospheric layers. In conclusion, the FSR suggests that a larger forecast impact of 
GPS-RO can be achieved by reducing the assumed error variances between 10 and 20 km, in layers 
where the observation weight is already quite large. This is somewhat surprising because ECMWF 
currently assumes a 1% observation error standard deviation in this vertical interval which is 
generally lower than the error statistics used at the other operational NWP centres and close to the 
instrumental implied error. An approximation to GPS-RO error variance deflation as a function of 
height suggested by the FSR computation is  
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 1 1( ) ( ) ( exp( ( ) / exp( ( ) / ))m mz z z z H z z Hα ασ σ γ∗ = × − − − − − − , (3.1) 

where km15=mz and .km5.2=H  The parameter γ modulates the error reduction e.g. γ =0.5 

gives a 50 % reduction (for retuning γ =0.25 and γ =0.50 has been used at ECMWF; not shown). The 
above function can be used for GPS-RO error variance retuning. The suggestion that observations 
should be given more weight where they are known to have a large positive impact is in line with the 
findings of Daescu and Langland (2013). However, the present results are more stringent because they 
imply correlations between the mean FER and mean FSR in the vertical interval between 10 and 20 
km. In Daescu and Langland 2013 (b) Figure 9.13, the statistical correlation between the observation 
forecast impact and the forecast sensitivity to the observation error variance is shown for a specific 
day (similar distribution was anyhow noticed for every other day) for radiosonde (TEMP) and 
AMSU-A channel 7. For the majority of observations a negative (beneficial) forecast impact was 
associated with a positive σ0 sensitivity (guidance is to reduce the assigned σ0) and a positive 
observation forecast impact (detrimental) was associated with a negative σ0 sensitivity (guidance is to 
increase the assigned σ0).  The sensitivity guidance therefore suggests reducing σ0 in those regions 
where observations are of increased benefit. In general, in a given forecast episode, the observation 
impact and the σ0 weight sensitivity are anti-correlated: beneficial observations should receive more 
weight (decrease σ0), detrimental observations should receive less weight (increase σ0). It is important 
to notice that this does not necessarily imply a deficiency in the σ0 specification because systematic 
positive sensitivities to the observation error variance implying a σ0-reduction, would also appear 
 

 
Figure 3: Percent of variation with respect to the mean vertical value of a) total observation 
influence (DFS), b) total FER and c) total FSR for June 2011 and for GPS-RO observations as a 
function of vertical levels 
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when the assigned B-weight is too large, that is, background error covariance inflation would be of 
benefit. In addition, the σ0 sensitivity computed here assumes a bias free perfect NWP model, and 
ignores vertical correlations in the GPS-RO error statistics. However, previous studies have 
demonstrated that this is probably not a realistic assumption (Poli et al., 2008).   

Figure 4 shows the geographical distribution of the forecast error reduction due to GPS-RO data 
(Figure4a) and the forecast sensitivity to the GPS-RO observation error variance (Figure 4b), 
averaged between 12 and 20 km and for June 2011. The average mean forecast impact of GPS-RO is 
larger over the Tropics area than in the extra-tropic (Fig 4a blue contour) but in general, apart from a 
few areas of degradation close to the poles, the GPS-RO observations decrease the 24 hour forecast 
error everywhere. As can be seen from Figure4b, the largest signal for observation error variance 
reduction is also in the tropical area (yellow-red contours).  

 
Figure 4: GPS-RO a) mean FER and b) mean FSR for June 2011 from 12 to 20 km. (a) Positive 
(negative) values mean increase (decrease) of forecast error; units are J kg-1(b) Positive 
(negative) values mean that deflation (inflation) of the observation error variances would 
decrease the 24 hour forecast error; units are J kg-1 
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4 Conclusions 
Over the last few years, the potential of using derived adjoint-based diagnostic tools has been 
increasingly exploited: these tools have been used to assess the impact of GPS-RO measurements in 
the ECMWF 4D-Var system. 

The observation influence is a well-known concept in multi-variate linear regression, where it is used 
to identify influential data and to predict the impact on the initial condition estimates of removing 
individual data from the regression. It provides a quantitative measure of the observation contribution 
in the analysis. In the context of 4D-Var there are many components that together determine the 
influence given to any one particular observation. First there is the specified observation error 
covariance R, which is obtained simply from tabulated values. Second, there is the background error 
covariance B (which at the time of the investigation was statistically computed from a month of 
background fields produced by the ten member’s ensemble data assimilation). And third, the 
dynamics and the physics of the forecast model which propagate in time, along the 4DVar window, 
the covariance and accordingly modify to take into account for local error growth in the prediction. 
The total influence is further modulated by data density.  

Forecast sensitivity to observations can be used to diagnose the impact on the short-range forecast, 
(24 hours), given the use of the adjoint of the data assimilation (DA) system and the implied linearity 
assumption. This sensitivity is as well as the observation influence a function of the DA adjoint but it 
also depends on the forecast error and the innovations. Therefore, large DFS is expected to produce 
large forecast error reduction.  

The global impact of observations is found to be positive and the forecast errors decrease for all data 
types. The largest contribution in the analysis, as measured by the DFS, and in the forecast, as 
measured by FER, is provided by the microwave sounder radiances (AMSU-A) followed by the 
infrared sounder radiances (IASI and AIRS) from instruments that mainly provide information on 
temperature and humidity. For microwave satellite humidity information, SSMIS (microwave 
imager), MHS (microwave sounder) and AMSR-E (microwave imager) instruments are in this order 
contributing to forecast error decrease. For conventional observations, Aircraft and TEMP provide the 
largest contribution. The forecast sensitivity to the observation variance suggests that if the 
observation error variances for all observation type, but TEMP and polar AMV, are deflated, the 24 
hour forecast error will reduce. 

The 5thlargest impact either in the analysis or in the forecast is provided by GPS-RO data, despite only 
contributing ~3 % of the observations assimilated in the system. The diagnostic tools show that 
largest contribution comes from the vertical levels between 10 and 20 km, and this is consistent with 
previous information content studies (Healy and Eyre, 2000) and OSEs (Bauer et al, 2013). The 
forecast sensitivity to the observation error variances suggests that an increase of DFS can be 
achieved by increasing the observation weight, in the layers with the largest DFS. The systematic 
positive observation error variance sensitivity (for GPS-RO and all the other observation types) does 
not necessarily imply a deficiency in the σ0 specification but, mainly points towards a too large 
assigned B-weight, suggesting that background error covariance inflation would benefit the data 
forecast impact. Suboptimal information provided by the representation of the statistical properties of 
the errors either model (background) or observation is a well-known problem; too small background 
error covariance matrix is also found by the DA a posteriori diagnostic (Desroziers et al. 2005) and 
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different attempt of covariance retuning has been exploited in the past (Desroziers and Ivanov, 2001; 
Chapnick et al 2005; Chapnick et al 2006).. 
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