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Abstract

Coincident observations cloud and precipitation from CloudSat and MODIS permit a more detailed evaluation 
of precipitation processes than has previously been possible from satellite observations. Here we present several 
new diagnostics of the hydrologic cycle focused on warm rain, which are facilitated by these state of the art 
observations. These diagnostics demonstrate the propensity of models to produce precipitation that is too 
frequent and too light and further provides insight into inaccuracies in the representation of physical processes 
(autoconversion and accretion) that govern the precipitation efficiency.

1. CloudSat Precipitation

CloudSat offers a view of global precipitation, which complements that of more traditional 

climatologies such as the Global Precipitation Climatology Project (GPCP). This is because of the 

unique sensitivity of the Cloud Profilling Radar to the occurrence of precipitation, including light 

precipitation and snow that go undetected by the standard remote sensing methods. Precipitation 

algorithms for CloudSat have developed and are outlined in a series of papers [L’Ecuyer and 

Stephens, 2002; Haynes et al., 2009; Lebsock and L’Ecuyer, 2011]. Figures 1 and 2 depict the 

climatology of the probability of precipitation and the quantification of warm rain from CloudSat. 

Note the high frequency of occurrence of precipitation in the high latitudes and warm rain in the 

subtropical eastern ocean basins. Also note the accumulation of surface rainfall from warm rain 

clouds approaching 1 mmd-1 in the subtropics. These are new metrics for model evaluation that can be 

used in conjunction with the standard precipitation diagnostics.

Figure 1: The probability of surface precipitation of any phase (left panel) and from clouds with 
cloud top temperatures warmer than 273 K (right panel) as derived from the CloudSat 
algorithms.

Probability of Precipitation

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Probability of Warm Rain

0.0000 0.0125 0.0250 0.0375 0.0500 0.0625 0.0750 0.0875 0.1000



LEBSOCK, M.: USING CLOUDSAT AND THE A-TRAIN FOR MODEL EVALUATION

162 ECMWF Workshop on Parametrization of Clouds and Precipitation, 5 - 8 November 2012

Figure 2 : The mean precipitation rate from warm rain clouds with cloud top temperaures greater 
than 273 K derived from CloudSat (left panel) and the TRMM Precipitation Radar (right panel).

2. Multi-Sensor Metrics

Coincident observations of cloud from MODIS and precipitation from CloudSat permit a more 

complete evaluation of model performance. In particular diagnostics that use both pieces of 

information simultaneously can provide guidance on particular parameterization that are deficient in 

the model.

Figure 3: The probability of precipitation 
from CloudSat as a function of the 
MODIS cloud water path (top; adopted 
from [Lebsock et al., 2008]). Similar 
statistics derived from the NICAM model 
run at 7km resolution and screened for 
low cloud scenarios (bottom). The ‘clean’ 
and ‘dirty’ labels are based on the 
MODIS aerosol index (the product of 
aerosol optical depth and angstrom 
exponent). The ‘stable’ and ‘unstable’ 
labels are based on the potential 
temperature difference between the 
surface and 700 hPa. See [Lebsock et al., 
2008] for further details.
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A straightforward example of this sensor synergy is shown in Figure 3, which shows the probability 

of precipitation as a function of the cloud water path from both observations and a model simulation 

from a NICAM model simulation. The model shows a qualitatively similar dependence of the 

probability of precipitation on both the water path and on the aerosol burden, however it has a 

tendency to produce precipitation too quickly hinting at an overly aggressive auto-conversion 

parameterization.

A more detailed diagnostic is provided by the Contoured Frequency by Optical Depth Diagrams 

(CFODD) introduced by [Suzuki et al., 2010]. These diagrams show the statistics of the profile of 

radar reflectivity stratified by the observed optical depth as a function of various observed cloud 

droplet effective radii. Because of the sensitivity of MODIS to cloud and CloudSat reflectivities to 

precipitation the CFODD offers a fingerprint of the water conversion process from cloud to 

precipitation. An example of the CFODD is provided in Figure 4.

Figure 4: A Contoured Frequency by Optical Depth Diagram. Each panel shows a grouping 
based on the retrieved MODIS effective radius. The reflectivity profile is indicative of the intensity 
of the precipitation. The lowest effective radii bin has a vertically oriented profile that is 
suggestive of non-precipitating clouds. As the effective radius increases the profile becomes 
bottom heavy suggesting precipitation.

3. Evaluation of Sub-grid Microphysical Correlations

This section focuses on two particular microphysical processes that govern the generation of 

precipitation in warm boundary layer clouds: (1) autoconversion: the direct collision and coalescence 

of cloud droplets into embryonic precipitation drops and (2) accretion: the collection of cloud droplets 

by falling precipitation drops. Together these two processes determine the overall coalescence 

efficiency in warm clouds and thus have a large influence on the timescale of precipitation. The rates 

at which these processes occur on local scales (i.e. scales smaller than the model resolution) are 

generally approximated by non-linear power-law equations in the microphysical variables of cloud 

water mixing ratio (qc), precipitation water mixing ratio (qp) and cloud droplet number concentration 

(Nc). In principle, to calculate the process rates, one would want to know the sub-grid variability of 

the microphysical quantities (qc, qp, Nc) and the co-variability of these quantities. However, the 

standard method to address the dilemma of sub-grid variability is the arbitrary ‘tuning’ of the 

parameters that govern the microphysical process rates. While uncertainty exists in the value of these 

parameters thus justifying some degree of tuning, it is not uncommon that they must be tuned well 

outside their known range of variability to obtain reasonable model simulations.

The intent of this section is two-fold. First, we introduce a simple analytic framework in which to 

describe the sub-grid covariance between cloud and precipitation water and examine the effect of 
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including covariance on the modeled accretion rates. We highlight the fact that neglecting covariance 

between cloud and precipitation causes a systematic underestimate of accretion rates. Second, we 

present observational constraints on sub-grid cloud and precipitation distributions from satellite 

observations and explore their scale-dependence. These constraints are presented in a form that is 

consistent with the analytic construct and could be readily adapted by existing cloud microphysics 

parameterizations.

3.1. Mathematical Constructs

3.1.1. A Measure of Sub-grid Variability

We use as a measure of sub-grid variability of a generic parameter (x) the inverse normalized 

variance,

2

2x

x



 (1)

where the overbar denotes the conditional (‘in cloud’) grid mean and  is the standard deviation of x. 

The variable () is also often referred to as homogeneity, because large values of  are indicative of 

homogenous distributions whereas low values are indicative of heterogeneous distributions. In the 

context of process parameterizations in global models,  has been used to characterize the variability 

of cloud optical depth [Barker et al., 1996] and cloud water [Wood and Hartmann, 2006]. Distinct 

variations in this parameter are observed with cloud fraction and type [Pincus et al., 1999]. For 

example, overcast stratus cloud is more likely to have larger values of ν than those of scattered 

cumulus.

3.1.2. Representation of the Microphysical Process Rates

The rates at which accretion (Mac) and autoconversion (Mau) occur are generally approximated by 

non-linear power-law equations of the form,

  acb

ac ac c pM a q q (2)

, ,au q au Nb b

au au c cM a q N (3)

The a’s and b’s are coefficients and the b’s represent the degree to which each process is non-linear 

and thus influenced by sub-grid variability. In general, the autoconversion formulation is more non-

linear than the accretion formulation (bau,q > bac) and is therefore thought to be more susceptible to 

sub-grid scale biases. Note also that the accretion rate is determined as the product of qp and qc and 

thus influenced by the covariance of these parameters. In this work we will use the power-law 

coefficients  given by Khairoutdinov and Kogan [2000].

3.1.3. Sub-grid Distribution Functions and Process Rate Enhancement Factors

One approach to modeling sub-grid scale effects is through a Probability Density Function (PDF) 

approach, in which the PDFs of the microphysical quantities may be either predicted or prescribed. 

An advantage of the PDF approach is that it permits the tuning of the process rates through a traceable 

and physically meaningful assumption regarding the sub-grid distribution of microphysical properties
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without resorting to arbitrary tuning of the process rate power law parameters (a’s and b’s) outside of 

physically reasonable bounds.

In the context of modeling sub-grid scale effects on microphysical process rates, the PDF of cloud 

water is often approximated by the univariate normalized gamma distribution [Pincus and Klein, 

2000; Morrison and Gettelman, 2008]. In this work we will follow an alternative formulation of 

Larson and Griffin [2012] who adopt the log-normal distribution to represent the sub-grid distribution 

of the microphysical parameters. The univariate lognormal distribution of any quantity (x) is given by,

 
  

2

2

1

22

ln
exp

lnln

x
P x

x



 

 
 
 
 

(4)

where  and ln are the mean and standard deviation of ln(x). However Eqns. 1 and 2 are functions of 

products of microphysical variables and therefore require a description of the sub-grid covariance of 

these parameters. To account for this covariance a bivariate distribution is required. The analogous 

bivariate lognormal distribution of any two quantities (x1,x2) is given by,
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where  is the correlation coefficient between x1 and x2.

With the assumption of a univariate lognormal distribution of a microphysical quantity (x) and that 

variations in x dominate the sub-grid effects on the process rates one may find the grid mean process 

rate for an arbitrary process following a power law of the form � = ��� by integrating the rate 

equation over the distribution [Boutle et al., 2012],

   ,b b
xM ax P x dx E b ax  (6)
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In the more general case of covariance between microphysical quantities where the process rate 

follows a power law form of � = ���
����

��, a double integration over the microphysical distributions 

yields the grid mean process rate [Boutle et al., 2012],

    1 2
1 2
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where,



LEBSOCK, M.: USING CLOUDSAT AND THE A-TRAIN FOR MODEL EVALUATION

166 ECMWF Workshop on Parametrization of Clouds and Precipitation, 5 - 8 November 2012

 

2 2
1 1 2 2

2 2

1 2 1 2 1 2

1 2 1 2

1 1 1 1
1 1 1 1exp ln ln* , , , ,

b b b b

E b b b b   
   

 

        
            
         

(9)

In this work we focus on the covariance of cloud and precipitation water and assume a uniform 

distribution of droplet number. Therefore Eqns. 6 and 7 apply to the assumptions that we have made 

regarding the autoconversion process (variable qc and uniform Nc) and Eqns. 8 and 9 apply to the 

assumptions that we have made regarding the accretion process (variable qc and qp).

The form of Eqns. 6-9 is appealing because it allows the calculation of a grid mean process rate using 

the unmodified process rate coefficients applied to the grid mean microphysical variables. All sub-

grid effects are contained in the enhancement factors E and E*. Each of these factors may be tuned, 

however, this framework provides a convenient separation of the tuning that can be attributed to sub-

grid influence and that related to the uncertainty in the process rate coefficients themselves. 

Furthermore, Eqn. 9 is satisfying in that it accounts for the likely possibility of correlation between 

microphysical parameters. From this equation it is clear that the three parameters that fundamentally 

determine the sub-grid influence on a process rate with known power law exponents (b1 and b2) are 

the normalized variances of the microphysical variables and the correlations between these variables 

(1, 2, ). This equation is specific to the assumption of lognormally distributed variables, however 

these three fundamental parameters may be more generally applied to any assumed distribution 

function.

3.2. Observational Analysis

The parameters (1, 2, ) are estimated for warm clouds over the ocean using observations from 

CloudSat and MODIS at various spatial resolutions approximating model grid boxes of differing 

sizes. Results shown here correspond to model grid boxes of size 141 km. The sample volume 

corresponds to a satellite footprint of approximately 1.5 km diameter. Note that estimation of these 

parameters is a function of the sample volume with small-scale sampling being preferable. However 

the satellite observations can provide us with the regional pattern of these parameters, which is 

difficult from high resolution modelling or in-situ data.

Figure 5 shows the histogram of the observed covariance parameters and Figure 6 shows their 

geographical distributions. The mediaan values of cloud precipitation correlation is 0.58. The median 

of the cloud and precipitation homogeneity are 2.46 and 1.51 respectively. These results demonstrate 

the unsurprising results that precipitation is more variable than cloud water and that the spatial 

correlation between these parameters is generally observed to be large. More importantly a coherent 

spatial distribution of the covariance parameters is discernable. Relatively larger correlations and 

parameter variance is observable in areas of frequent cumulus than in areas characterized by 

stratocumulus. These patterns influence the regional distributions of the sub-grid influence on the 

microphysical process rates. Most models have no physical mechanism for producing this sort of 

regionality. These particular observations offer a guide for model development that seeks to introduce 

a regional depiction of sub-grid variability in microphysics.
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Figure 5: The histograms of the cloud-precipitation correlation (left) and the cloud and 
precipitation homogeneity (right) derived from CloudSat and MODIS.

Figure 6: Regional distributions of the cloud-precipitation correlation (left) and the cloud and 
precipitation homogeneity (right) derived from CloudSat and MODIS.

Figure 7 shows the regional distribution of the enhancement factor for autoconversion and accretion 

derived from Figure 6. As a reminder the magnitude of these factors are dependent on the ~1.5 km 

sampling volume of this analysis, however the geographical distribution is not necessarily limited in 

the same manner. The autoconversion enhancement is approximately double that of the accretion 

enhancement regardless of location. Two regimes are evident in this figure: A shallow convective 

region characterized by low cloud water homogeneity, accretion enhancement near 80%, and 

autoconversion enhancement near 140%; A stratocumulus region in the eastern subtropical ocean 

basins and high-latitudes characterized by high homogeneity, accretion enhancement near 40%, and 

autoconversion enhancement near 60%. The regional variation in the enhancement factors is largely 

determined by the spatial distribution of the cloud homogeneity relative to that of the correlation. 

These results suggest that  might reasonably be parameterized as a global constant. Furthermore, if a 

parameterization hopes to achieve the correct regionality of process rate enhancement the most critical 

parameter to characterize is c, which fortunately can be evaluated from a number of existing 

observational datasets.

Figure 7:  Regional distributions of the autoconversion (left) and accretion (right) enhancement 
factors derived from the results shown in figure 6.
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