
Blurring the boundary between 
dynamics and physics 

Tim Palmer, Peter Düben, Hugh McNamara 
University of Oxford 



Dynamical Core  Parametrisations  

2.  p
t

ρ ρ ν∂ + ∇ = −∇ + ∇ ∂ 
u u g u

Resolved scales Unresolved scales The Canonical Numerical Ansatz 



Dynamical Core  Parametrisations  

2.  p
t

ρ ρ ν∂ + ∇ = −∇ + ∇ ∂ 
u u g u

Resolved scales Unresolved scales 

• Discretisation errors 
• Convergence errors 
• Round-off errors 

• Errors in the functional form of P 
• Errors in the assumed values of α 



Dynamical Core  Parametrisations  

Truncation Scale (7 to 8 orders of 
magnitude above viscous scale!) 
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If the energy 
spectrum in the 
atmosphere was 
like this…… 



 grid box  grid box 

… ie the world looks like this 



 grid box  grid box 

… then the Canonical Numerical Ansatz for 
solving the underlying PDEs   

would be well posed 

… or this 



But reality is 
more like this… 
(Nastrom and 
Gage, 1985)!  



The reality of the situation 

grid box  grid box 

 cannot be described by a simple deterministic formula  



Small 
tendency 

Medium 
tendency 

Large 
tendency 

Coarse-graining                       
(Shutts and Palmer, 2007) 

 
Assume T1279 (16km) model = “truth”.  
 
Assume  T159  coarse-grain “model” grid.  
 
Bar= Subset of T159 total temperature 
parametrisation tendencies driven by 
T1279 coarse-grain fields. 
 
Curve= Corresponding “true” sub-T159-
scale tendency based on T1279 truth 
model. 
 
Ie when the parametrisations think the 
sub-grid pdf is a thin hat function, the 
reality is a much broader pdf.  
 
The standard deviation increases with 
parametrised tendency – consistent with 
multiplicative stochasticity.  

Callado-Palarès and Shutts, 2013.  
 



Earth’s Topography has Power Law Structure Too 



 grid box  grid box 

… ie not like this 



grid box  grid box 

… but this 



grid box 



From Schertzer and 
Lovejoy, 1993 
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The Canonical Numerical Ansatz – ie  the 
deterministic delineation into “resolved” and 
“parametrised” scales - is itself a (the?) major 

source of model error. 



Numerics Group  Physics Group  

Not my 
problem! 

Not my 
problem! 



Dynamical 
Core 

 “Physics” 
Computationally cheap 

stochastic-dynamic 
model providing 

specific realisations of 
sub-grid processes  

Not such a “brick wall” interface. Only makes sense 
in an ensemble context. But forecasts should only 

made in an ensemble context in any case! 



Probability of an “on”cell 
proportional to CAPE and 

number of adjacent “on” cells 
– “on” cells feedback to the 

resolved flow 

Stochastic  
Cellular 

Automaton 
for 

Convection 

Palmer 1997 



 Stochastic Cellular Automata 



Stochastic multicloud model based on a Markov chain lattice 
model. An extension of an Ising-type spin-flip model used for 

phase transitions in material science  



Superparameterization 

Grabowski, Randall and others.  



• Improved forecast 
reliability 

• Reduced 
systematic error 

Originally based on CA 
pattern generators, 

now spectral.  



Stochastic Parametrisation  

Triangular 
Truncation  

Partially Stochastic   

Are we “over-engineering” our dynamical cores by 
using double-precision bit-reproducible 

computations for high wavenumbers, thereby 
making them inefficient for evolution to high 

resolution?  



Towards the cloud-resolved model  

Possible for NWP by 
2030? For climate change 

predictions, we cannot 
not wait that long! 



Is degrading the dynamical core as we 
approach the truncation scale a credible route 

to global cloud resolution (< 1km) by 2020? 
 

Less precise numerics, more reliable forecasts! 



• Most computers follow the IEEE 754 standard 
 

𝑥 = −1 𝑠  ∙ 𝑐 ∙ 𝑏𝑞 
 

 
 

• Examples 

Floating point numbers 

−12.345 = −1 1  ∙ 12345 ∙ 10−3 

s sign 
c significand (coefficient) 
b base 
q exponent 

Name Size Decimal 
digits 

Minimum 
number 

Maximum 
number 

half precision 2 Bytes 3.3 10-5 104 

single precision 4 Bytes 7.2 10-38 1038 

double precision 8 Bytes 16.0 10-308 10308 

quadruple precision 16 Bytes 34.0 10-4932 104932 

NB. 1/32 precision = 1 bit = on/off (a cellular automaton)!!  



Double Precision 

Single Precision 

Half Precision 



Triangular 
Truncation  

 Reduced Precision 
arithmetic 

parametrisation 



Motivation 
• Move less information 

 
real(kind=8) :: a   ! I am 8 Bytes 
real(kind=4) :: b   ! I am 4 Bytes 

 
• Fit more information into cache 
 
• Lower precision arithmetic is faster 

 
a = a+a-a*a*a   ! Wow, time flies! 
b = b+b-b*b*b   ! That was fast! 

Oliver Fuhrer -  Met Swisse 



In terms of speed, energy 
consumption and size, 
inexact computer chips like 
this prototype, are about 15 
times more efficient than 
today's microchips. 

This comparison shows frames produced with video-processing software on traditional processing elements (left), 
inexact processing hardware with a relative error of 0.54 percent (middle) and with a relative error of 7.58 percent 
(right). The inexact chips are smaller, faster and consume less energy. The chip that produced the frame with the 

most errors (right) is about 15 times more efficient in terms of speed, space and energy than the chip that 
produced the pristine image (left). 

Superefficient inexact chips  

Krishna Palem. 
Rice, NTU 
Singapore 

http://news.rice.edu/2012/05/17/computing-experts-unveil-superefficient-inexact-chip/ 



Towards the Stochastic 
Dynamical Core?  

Inexactness of chip  

Triangular 
Truncation  



Emulator of Stochastic Chip  

10% probability of bit flip = 90% reduction in 
power consumption by chips  



Experiments with the Lorenz ‘96 System (i) 
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Assume Y 
unresolved 

Approximate 
sub-grid 
tendency by U 

Deterministic: U = Udet  
 

Additive: U = Udet + ew,r 
 

Multiplicative: U = (1+er) Udet 
 
Where: 
Udet = cubic polynomial in X 
ew,r  = white / red noise 
Fit parameters from full model 

Skill in simulating climate pdf 

Arnold et al, 2013  

Worse 



Imprecise L96 is more accurate than 
parametrised L96 

20% fault rate on Y variables 



Weather forecasts with imprecise processing 

Truth = T159 integration. 500hPa Geopotential height rms error. 
 
 



Emulator of Stochastic Chip/Reduced 
Precision on T85 spectral model 

10% probability of bit flip  

The emulator is used on 50% of numerical workload: 
 
All floating point operations in grid point space 
 
All floating point operations in the Legendre transforms between wavenumbers 31 and 85.  
 
Cost approx that of T73 
 

50% probability of 
bit flip  



Weather forecasts with imprecise processing 



Would the IFS work in single precision? 
 
 
Approach: 
• Using OpenIFS, (nearly) all of the double precisionnumbers 

have been replaced by single precision floating point 
numbers. 

• We perform a weather forecast at T159 resolution with 
double and with single precision and compare the results. 

 



Would the IFS work in single precision? 



Would the IFS work in single precision? 

Top row: Differences between the double and the single precision simulation. 
Bottom row: Differences between two ensemble members for a T159 IFS forecast with SPPT 



Could we run leg2 EPS 
at higher resolution 

using single precision 
arithmetic? 

 



In a presentation at ECMWF on Challenges in Application 
Scaling in an Exascale Environment, IBM’s Chief Engineer for 

HPC, Don Grice, noted that:  
 

“Increasingly there will be a tension between energy efficiency 
and error detection”, 

  
and asked whether : 

 
“…there needs to be a new software construct which identifies 

critical sections of code where the right answer must be 
produced”  

 (http://www.ecmwf.int/ 
newsevents/meetings/workshops/2010/high performance 

computing 14th/index.html) 



In the context of NWP/Climate models 

• Which parts of the code need to be precise and 
which parts not? 

• Where can we drop the need for precise 
determinism? 

• Is a discriminating approach to the use of 
precision/imprecision, determinism/stochasticity, 
a credible route for evolution to ultra-high 
resolution (eg <1km) – and hence more reliable 
weather and climate forecasts - by 2020? 



20 Years Ago 

Dynamics  Parametrisation  

O(100km) 



Now 

Dynamics  Parametrisation  

O(10km) 



By 2020? 

Dynamics  Parametrisation  

O(1km) 
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