Scale-dependent time integration and thermodynamic consistency for weakly compressible flows

... or ...

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin
Towards a
“very balanced” compressible flow solver

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin
Thanks to...

Ulrich Achatz (Goethe-Universität, Frankfurt)
Didier Bresch (Université de Savoie, Chambéry)
Omar Knio (Duke University, Durham (NC))
Olivier Pauluis (Courant Institute, New York)
Fabian Senf (IAP, Kühlungsborn)
Piotr Smolarkiewicz (NCAR, Boulder (CO))
Stefan Vater (Hamburg University)
Tommaso Benacchio (FU Berlin)
Warren O’Neill (FU Berlin)
Matthias Waidmann (FU Berlin)
Michael Oevermann (Chalmers Univ., Gothenburg)

Deutsche Forschungsgemeinschaft

MetStröm DFG
Limit regimes in atmospheric flows

Sound-proof limits

Semi-implicit scheme for compressible flows

Scale-dependent time integration

Extensions: Moisture & general Eqs. of State
Asymptotic Modelling Framework

10 km / 20 min

1000 km / 2 days

10000 km / 1 season

Thanks to:
P.K. Taylor, Southampton Oceanogr. Inst.; P. Névir, Freie Universität Berlin; S. Rahmstorf, PIK, Potsdam
Asymptotic Modelling Framework

Anelastic Boussinesque Model

\[\begin{align*}
 &u_t + u \cdot \nabla u + w u_z + \nabla \pi = S_u \\
 &w_t + u \cdot \nabla w + w w_z + \pi_z = -\theta' + S_w \\
 &\theta'_t + u \cdot \nabla \theta' + w \theta'_z = S'_\theta \\
 &\nabla \cdot (\rho_0 u) + (\rho_0 w)_z = 0 \\
 &\theta = 1 + \varepsilon^4 \theta'(x, z, t) + o(\varepsilon^4)
\end{align*} \]

10 km / 20 min

Quasi-geostrophic theory

\[\begin{align*}
 &q = \zeta^{(0)} + \Omega_0 \beta \eta + \Omega_0 \frac{\partial}{\partial z} \left(\frac{\rho^{(0)}}{\rho_0} \frac{d\Theta}{dz} \theta^{(3)} \right) \\
 &\zeta^{(0)} = \nabla^2 \pi^{(3)}, \quad \theta^{(3)} = -\frac{\partial \pi^{(3)}}{\partial z}, \quad u^{(0)} = \frac{1}{\Omega_0} k \times \nabla \pi^{(3)}
\end{align*} \]

1000 km / 2 days

EMIC - equations (CLIMBER-2)

\[\begin{align*}
 &\frac{\partial Q_T}{\partial t} + \nabla \cdot F_T = S_T \\
 &\frac{\partial Q_q}{\partial t} + \nabla \cdot F_q = S_q \\
 &Q_T = \int_{\rho_0}^{\rho} \int_{\rho_0}^{\rho} \left(\rho u \left(\varphi + u \varphi \right) + \varphi \right) \, d\rho \\
 &F_T = \int_{\rho_0}^{\rho} \int_{\rho_0}^{\rho} \left(\rho u \left(\varphi + u \varphi \right) + \varphi \right) \, d\rho \\
 &Q_q = \int_{\rho_0}^{\rho} \int_{\rho_0}^{\rho} \left(\rho u \left(\varphi + u \varphi \right) + \varphi \right) \, d\rho \\
 &F_q = \int_{\rho_0}^{\rho} \int_{\rho_0}^{\rho} \left(\rho u \left(\varphi + u \varphi \right) + \varphi \right) \, d\rho \\
 &u = u_0 + u_\alpha, \quad f_\rho \times u_0 = -\nabla \pi, \quad u_\alpha = \alpha \nabla p_0
\end{align*} \]

V. Petoukhov et al., CLIMBER-2 ..., Climate Dynamics, 16, (2000)

10000 km / 1 season
Asymptotic Modelling Framework

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth’s radius</td>
<td>$a \sim 6 \cdot 10^6 \text{ m}$</td>
</tr>
<tr>
<td>Earth’s rotation rate</td>
<td>$\Omega \sim 10^{-4} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Acceleration of gravity</td>
<td>$g \sim 9.81 \text{ ms}^{-2}$</td>
</tr>
<tr>
<td>Sea level pressure</td>
<td>$p_{\text{ref}} \sim 10^5 \text{ kgm}^{-1}\text{s}^{-2}$</td>
</tr>
<tr>
<td>H$_2$O freezing temperature</td>
<td>$T_{\text{ref}} \sim 273 \text{ K}$</td>
</tr>
<tr>
<td>Tropospheric potential temperature variation</td>
<td>$\Delta \Theta \sim 40 \text{ K}$</td>
</tr>
<tr>
<td>Dry gas constant</td>
<td>$R \sim 287 \text{ m}^2\text{s}^{-2}\text{K}^{-1}$</td>
</tr>
<tr>
<td>Dry isentropic exponent</td>
<td>$\gamma \sim 1.4$</td>
</tr>
</tbody>
</table>

Distinguished limit:

$$\Pi_1 = \frac{h_{\text{sc}}}{a} \sim 1.6 \cdot 10^{-3} \sim \varepsilon^3$$

$$\Pi_2 = \frac{\Delta \Theta}{T_{\text{ref}}} \sim 1.5 \cdot 10^{-1} \sim \varepsilon$$

$$\Pi_3 = \frac{c_{\text{ref}}}{\Omega a} \sim 4.7 \cdot 10^{-1} \sim \sqrt{\varepsilon}$$

Where:

$$h_{\text{sc}} = \frac{RT_{\text{ref}}}{g} = \frac{p_{\text{ref}}}{\rho_{\text{ref}}g} \sim 8.5 \text{ km}$$

$$c_{\text{ref}} = \sqrt{RT_{\text{ref}}} = \sqrt{gh_{\text{sc}}} \sim 300 \text{ m/s}$$
Asymptotic Modelling Framework

distinguished limit continued

\[\text{Fr}_{\text{int}} \sim \epsilon \]
\[\text{Ro}_{h_{sc}} \sim \epsilon^{-1} \]
\[\text{Ro}_{L_{Ro}} \sim \epsilon \]
\[\text{Ma} \sim \epsilon^{3/2} \]
Asymptotic Modelling Framework

Compressible flow equations with general source terms

\[
\left(\frac{\partial}{\partial t} + v_{\|} \cdot \nabla_{\|} + w \frac{\partial}{\partial z} \right) v_{\|} + \varepsilon (2\Omega \times v)_{\|} + \frac{1}{\varepsilon^3 \rho} \nabla_{\|} p = S_{v_{\|}},
\]

\[
\left(\frac{\partial}{\partial t} + v_{\|} \cdot \nabla_{\|} + w \frac{\partial}{\partial z} \right) w + \varepsilon (2\Omega \times v)_{\perp} + \frac{1}{\varepsilon^3 \rho} \frac{\partial p}{\partial z} = S_w - \frac{1}{\varepsilon^3},
\]

\[
\left(\frac{\partial}{\partial t} + v_{\|} \cdot \nabla_{\|} + w \frac{\partial}{\partial z} \right) \rho + \rho \nabla \cdot v = 0,
\]

\[
\left(\frac{\partial}{\partial t} + v_{\|} \cdot \nabla_{\|} + w \frac{\partial}{\partial z} \right) \Theta = S_\Theta.
\]

Expansions

\[
\begin{pmatrix}
\rho \\
v_{\|} \\
\rho \\
\Theta
\end{pmatrix} =: \mathbf{U} = \sum_{i=0}^{m} (\varepsilon^\alpha)^i \mathbf{U}^{(i)} + o \left((\varepsilon^\alpha)^m \right)
\]
Recovered classical single-scale models:

\[U^{(i)} = U^{(i)}(t, x, z) \]
Linear small scale internal gravity waves

Anelastic & pseudo-incompressible models

\[U^{(i)} = U^{(i)}(t, x, z) \]

Linear large scale internal gravity waves

Mid-latitude Quasi-Geostrophic Flow

\[U^{(i)} = U^{(i)}(\epsilon^2 t, \epsilon^2 x, z) \]

Equatorial Weak Temperature Gradients

\[U^{(i)} = U^{(i)}(\epsilon^2 t, \epsilon^{-1} \xi(\epsilon^2 x), z) \]
Semi-geostrophic flow

Kelvin, Yanai, Rossby, and gravity Waves

\[U^{(i)} = U^{(i)}(\epsilon^{5/2} t, \epsilon^{5/2} x, \epsilon^{5/2} y, z) \]

... and many more
Asymptotic Modelling Framework

\[\frac{h_{sc}}{u_{ref}} \]

\[1/\varepsilon^3 \]
\[1/\varepsilon^{5/2} \]
\[1/\varepsilon^2 \]
\[1/\varepsilon \]
\[\varepsilon \]

bulk micro convective meso synoptic planetary

\[1 \]

\[\varepsilon \]

advection acoustic waves inertial waves

\[1/\varepsilon \]

\[1/\varepsilon^2 \]

\[1/\varepsilon^3 \]

\[h_{sc} \]

Boussinesq WTG HPE

anelastic / pseudo-incompressible internal waves

WTG + Coriolis HPE + Coriolis

PG

Obukhov scale

\[1/\varepsilon^{5/2} \]

Limit regimes in atmospheric flows

Sound-proof limits

Semi-implicit scheme for compressible flows

Scale-dependent time integration

Extensions: Moisture & general Eqs. of State
Key question:

What is the slow flow limiting dynamics like?

i.e.

What should a compressible solver do in the limit?
Sound-Proof Models

Compressible & sound-proof flow equations

\[\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0 \]

\[(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{u}) + P \nabla \| \pi = 0 \]

\[(\rho \mathbf{w})_t + \nabla \cdot (\rho \mathbf{v} \mathbf{w}) + P \pi_z = -\rho g \]

\[P_t + \nabla \cdot (P \mathbf{v}) = 0 \]

\[P = \rho^{1 \over \gamma} = \rho \theta, \quad \pi = p / \Gamma P, \quad \Gamma = c_p / R, \quad \mathbf{v} = \mathbf{u} + \mathbf{w} \mathbf{k} \quad (\mathbf{u} \cdot \mathbf{k} \equiv 0) \]

Drop term for:

anelastic\(^\dagger\) (approx.)

pseudo-incompressible\(^*\)

(hydrostatic-primitive)

Parameter range & length and time scales of asymptotic validity?

\(^\dagger\) e.g. Lipps & Hemler, JAS, 29, 2192–2210 (1982)

Sound-Proof Models

Compressible & sound-proof flow equations

\[\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0 \]

\[(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{v} \cdot \mathbf{u}) + P \nabla \pi = 0 \]

\[(\rho \mathbf{w})_t + \nabla \cdot (\rho \mathbf{v} \cdot \mathbf{w}) + P\pi_z = -\rho g \]

\[P_t + \nabla \cdot (P \mathbf{v}) = 0 \]

\[P = p^{\frac{1}{\gamma}} = \rho \theta \, , \quad \pi = p/\Gamma P \, , \quad \Gamma = c_p/R \, , \quad \mathbf{v} = \mathbf{u} + \mathbf{w} \mathbf{k} \quad (\mathbf{u} \cdot \mathbf{k} \equiv 0) \]

Parameter range & length and time scales of asymptotic validity?

drop term for:
anelastic\(^\dagger\) (approx.)
pseudo-incompressible\(^*\)
(hydrostatic-primitive)

e.g. Lipps & Hemler, JAS, 29, 2192–2210 (1982)
From here on ε is the (isothermal) Mach number

$$\varepsilon = \frac{u_{\text{ref}}}{\sqrt{p_{\text{ref}}/\rho_{\text{ref}}}} = \frac{u_{\text{ref}}}{\sqrt{gh_{\text{sc}}}}$$
Characteristic (inverse) time scales

advection : \(\frac{u_{\text{ref}}}{h_{\text{sc}}} \) \(\frac{\sqrt{gh_{\text{sc}}}}{u_{\text{ref}}} = 1 \)

internal waves : \(N = \sqrt{\frac{g}{\theta}} \frac{d\theta}{d\bar{z}} \) \(\frac{\sqrt{gh_{\text{sc}}}}{u_{\text{ref}}} \frac{h_{\text{sc}} d\theta}{\theta d\bar{z}} = \frac{1}{\varepsilon} \frac{\sqrt{gh_{\text{sc}}}}{u_{\text{ref}}} \frac{h_{\text{sc}} d\theta}{\theta d\bar{z}} \)

sound : \(\frac{\sqrt{p_{\text{ref}}/\rho_{\text{ref}}}}{h_{\text{sc}}} = \frac{\sqrt{gh_{\text{sc}}}}{h_{\text{sc}}} \) \(\frac{\sqrt{gh_{\text{sc}}}}{u_{\text{ref}}} = 1 \frac{\sqrt{gh_{\text{sc}}}}{u_{\text{ref}}} \)
Design Regime (10 km / 20 min)

Characteristic (inverse) time scales

<table>
<thead>
<tr>
<th>Dimensional</th>
<th>Dimensionless</th>
</tr>
</thead>
<tbody>
<tr>
<td>advection</td>
<td>(\frac{u_{\text{ref}}}{h_{\text{sc}}})</td>
</tr>
<tr>
<td>internal waves</td>
<td>(N = \sqrt{\frac{g,d\bar{\theta}}{\bar{\theta},dz}})</td>
</tr>
<tr>
<td>sound</td>
<td>(\frac{\sqrt{p_{\text{ref}}/\rho_{\text{ref}}}}{h_{\text{sc}}} = \frac{\sqrt{gh_{\text{sc}}}}{h_{\text{sc}}})</td>
</tr>
</tbody>
</table>

Ogura & Phillips’ regime* with two time scales

\(\bar{\theta} = 1 + \varepsilon^2 \bar{\theta}(z) + \ldots \) \(\Rightarrow \) \(\frac{h_{\text{sc}}\,d\bar{\theta}}{\bar{\theta}\,dz} = O(\varepsilon^2) \)

Design Regime (10 km / 20 min)

Characteristic (inverse) time scales

<table>
<thead>
<tr>
<th>Dimensional</th>
<th>Dimensionless</th>
</tr>
</thead>
<tbody>
<tr>
<td>advection</td>
<td>(\frac{u_{\text{ref}}}{h_{sc}})</td>
</tr>
</tbody>
</table>
| internal waves | \(N = \sqrt{\frac{g d\hat{\theta}}{\theta} dz} \) | \(\sqrt{gh_{sc}} \) \(\frac{h_{sc} d\hat{\theta}}{\theta} dz \) = \(\sqrt{h_{sc} d\hat{\theta}} \)
| sound | \(\frac{\sqrt{p_{\text{ref}}/\rho_{\text{ref}}}}{h_{sc}} = \sqrt{gh_{sc}} \) | \(\frac{\sqrt{gh_{sc}}}{u_{\text{ref}}} \) = \(\frac{1}{\varepsilon} \) |

Ogura & Phillips’ regime* with two time scales

\[\bar{\theta} = 1 + \varepsilon^2 \hat{\theta}(z) + \ldots \quad \Rightarrow \quad \frac{h_{sc} d\bar{\theta}}{\theta} dz = O(\varepsilon^2) \quad \Rightarrow \quad \Delta \bar{\theta} \bigg|_{z=0} < 1 \text{ K} \]

Design Regime (10 km / 20 min)

Characteristic (inverse) time scales

<table>
<thead>
<tr>
<th>Dimensional</th>
<th>Dimensionless</th>
</tr>
</thead>
<tbody>
<tr>
<td>advection</td>
<td>(\frac{u_{\text{ref}}}{h_{sc}})</td>
</tr>
<tr>
<td>internal waves</td>
<td>(N = \sqrt{\frac{gd\theta}{\theta dz}})</td>
</tr>
<tr>
<td>sound</td>
<td>(\frac{\sqrt{p_{\text{ref}}/\rho_{\text{ref}}}}{h_{sc}} = \frac{\sqrt{gh_{sc}}}{h_{sc}})</td>
</tr>
</tbody>
</table>

\(\sqrt{gh_{sc}} \sqrt{\frac{d\theta}{\theta dz}} \) = \frac{1}{\epsilon^{\nu}} \sqrt{\frac{h_{sc} d\theta}{\theta dz}}

Realistic regime with three time scales

\(\bar{\theta} = 1 + \epsilon^{\mu} \hat{\theta}(z) + \ldots \) \quad \Rightarrow \quad \frac{h_{sc} d\theta}{\theta dz} = O(\epsilon^{\mu}) \quad (\nu = 1 - \mu/2)
Fast linear compressible / pseudo-incompressible modes

\[\tilde{\theta}_\vartheta + \tilde{w} \frac{d\tilde{\theta}}{dz} = 0 \]

\[\tilde{\vartheta}_\vartheta + \tilde{\theta} k + \tilde{\theta} \nabla \pi^* \] \[+ \varepsilon^\mu \pi^*_\vartheta + \left(\gamma \Gamma \pi \nabla \cdot \tilde{\vartheta} + \tilde{w} \frac{d\pi}{dz} \right) = 0 \]

Vertical mode expansion (separation of variables)

\[\left(\begin{array}{c} \tilde{\theta} \\ \tilde{u} \\ \tilde{w} \\ \pi^* \end{array} \right) (\vartheta, \varphi, z) = \left(\begin{array}{c} \Theta^* \\ U^* \\ W^* \\ \Pi^* \end{array} \right) (z) \exp \left(i [\omega \vartheta - \lambda \cdot \varphi] \right) \]
Design Regime (10 km / 20 min)

\[- \frac{d}{dz} \left(\frac{1}{1 - \frac{\varepsilon \mu \omega^2}{\lambda^2 c^2}} \frac{dW^*}{dz} \right) + \frac{\lambda^2}{\theta P} W^* = \frac{1}{\omega^2} \frac{\lambda^2 N^2}{\theta P} W^* \]

Internal wave modes \(\left(\frac{\omega^2}{c^2} = O(1) \right) \)

- pseudo-incompressible modes/EVals = compressible modes/EVals + \(O(\varepsilon^\mu) \)

- phase errors remain small over advection time scales for \(\mu > \frac{2}{3} \)

The anelastic and pseudo-incompressible models remain relevant for stratifications

\[\frac{1}{\theta} \frac{d\bar{\theta}}{dz} < O(\varepsilon^{2/3}) \quad \Rightarrow \quad \Delta \theta \bigg|_{h_{sc}} \lesssim 40 \text{ K} \]

not merely up to \(O(\varepsilon^2) \) as in Ogura-Phillips (1962)
Key question:

What is the slow flow limiting dynamics like?

i.e.

What should a compressible solver do in the limit?

Answer:

Behave pseudo-incompressibly!*

* Anelastic “looses” only for breaking of internal wave packets in the stratosphere
Limit regimes in atmospheric flows

Sound-proof limits

Semi-implicit scheme for compressible flows

Scale-dependent time integration

Extensions: Moisture & general Eqs. of State
pseudo-incompressible ⇔ compressible
Pseudo-incompressible \Leftrightarrow compressible

Compressible

\[
\begin{align*}
\rho_t + \nabla \cdot (\rho \mathbf{v}) &= 0 \\
(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) + P \nabla \pi &= -\rho g \mathbf{k} \\
\mathbf{P}_t + \nabla \cdot (P \mathbf{v}) &= 0
\end{align*}
\]

\[
P = p^{\frac{1}{\gamma}} = \rho \theta , \quad \pi = p / \Gamma P , \quad \Gamma = c_p / R , \quad \mathbf{v} = \mathbf{u} + w \mathbf{k} \quad (\mathbf{u} \cdot \mathbf{k} \equiv 0)
\]
Pseudo-incompressible \iff compressible

Pseudo-incompressible

\[
\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0
\]

\[
(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) + \overline{P} \nabla \pi = -\rho g \mathbf{k}
\]

\[
\times \quad \nabla \cdot (\overline{P} \mathbf{v}) = 0
\]

\[
\rho \theta = \overline{P}, \quad \pi : \text{“elliptic pressure”}
\]
 Predictor-corrector scheme* for pseudo-incompressible flow
 Predictor

Solve auxiliary hyperbolic system over \(t^n \rightarrow t^{n+1} \)
(by your favorit 2nd order scheme)*

\[
\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0
\]

\[
(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) = -\rho g k - P \nabla \pi^n
\]

\[
P_t + \nabla \cdot (P \mathbf{v}) = 0
\]

Predicted values satisfy

\[
\begin{pmatrix}
\rho \\
P \\
\theta
\end{pmatrix}^{n+1,*} = \begin{pmatrix}
\rho \\
P \\
\theta
\end{pmatrix}^{n+1} + O \left((\Delta t)^3\right)
\]
Predictor

Solve auxiliary hyperbolic system over \(t^n \to t^{n+1} \)

(by your favorit 2nd order scheme)*

\[
\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0
\]

\[
(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) = -\rho g k - P \nabla \pi^n
\]

\[
P_t + \nabla \cdot (P \mathbf{v}) = 0
\]

But

\[
\mathbf{v}^{n+1,*} = \mathbf{v}^{n+1} + O \left((\Delta t)^2 \right)
\]

\[
P^{n+1,*} \neq \overline{P}
\]
Corrector for advective fluxes

\[\pi^{n+1} = \pi^n + \delta\pi \]

\[(P\nu)^{n+1/2} = (P\nu)^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta\pi \]

\[P^{n+1} = P^n - \Delta t \nabla \cdot (P\nu)^{n+1/2} \equiv \overline{P} \]
Corrector for advective fluxes

\[\pi^{n+1} = \pi^n + \delta \pi \]

\[(P\nu)^{n+1/2} = (P\nu)^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta \pi \]

\[P^{n+1} = P^{n+1,*} + \frac{(\Delta t)^2}{2} \nabla \cdot (P\theta \nabla \delta \pi) \]

Solve elliptic pressure equation

\[\nabla \cdot (P\theta \nabla \delta \pi) = \frac{2}{(\Delta t)^2} \left(\bar{P} - P^{n+1,*} \right) \]
Corrector for advective fluxes

\[\pi^{n+1} = \pi^n + \delta\pi \]

\[(P\nu)^{n+1/2} = (P\nu)^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta\pi \]

\[P^{n+1} = P^{n+1,*} + \frac{(\Delta t)^2}{2} \nabla \cdot (P\theta \nabla \delta\pi) = \bar{P} \]

Flux correction for advected scalars \(X \in \{1, 1/\theta, \nu/\theta\} \)

\[(PX)^{n+1} = (PX)^{n+1,*} + \frac{(\Delta t)^2}{2} \nabla \cdot (X P\theta \nabla \delta\pi) \]
That’s it up to ...

divergence control for ν^{n+1}

some “bells & whistles”
Predictor-corrector scheme

for

compressible flow
Predictor*

Solve auxiliary hyperbolic system over $t^n \rightarrow t^{n+1}$
(by your favorit 2nd order scheme)

$$\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) = -\rho g \mathbf{k} - P \nabla \pi^n$$

$$P_t + \nabla \cdot (P \mathbf{v}) = 0$$

Predicted values satisfy

$$\begin{pmatrix} \rho \\ P \\ \theta \end{pmatrix}^{n+1,*} = \begin{pmatrix} \rho \\ P \\ \theta \end{pmatrix}^{n+1} + O \left((\Delta t)^3 \right)$$

*Identical to psinc-predictor!
Predictor*

Solve auxiliary hyperbolic system over \(t^n \rightarrow t^{n+1} \)
(by your favorit 2nd order scheme)

\[
\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0
\]

\[
(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) = -\rho g \mathbf{k} - P \nabla \pi^n
\]

\[
P_t + \nabla \cdot (P \mathbf{v}) = 0
\]

But

\[
\mathbf{v}^{n+1,*} = \mathbf{v}^{n+1} + O\left((\Delta t)^2\right)
\]

\[
P^{n+1,*} \neq \overline{P}
\]

*Identical to psinc-predictor!
Corrector for advective fluxes*

\[\pi^{n+1} = \pi^n + \delta \pi \]

\[(Pv)^{n+1/2} = (Pv)^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta \pi \]

\[P^{n+1} = P^n - \Delta t \nabla \cdot (Pv)^{n+1/2} \]

Flux correction for advected scalars \(X \in \{1, 1/\theta, \nu/\theta\} \)

\[(PX)^{n+1} = (PX)^{n+1,*} + \frac{(\Delta t)^2}{2} \nabla \cdot (X P\theta \nabla \delta \pi) \]

*Identical to psinc-predictor!
Corrector for advective fluxes

$$\pi^{n+1} = \pi^n + \delta\pi$$

$$(P\mathbf{v})^{n+1/2} = (P\mathbf{v})^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta\pi$$

$$P^{n+1} = P^n - \Delta t \nabla \cdot (P\mathbf{v})^{n+1/2}$$

But now

$$P^{n+1} - P^n = \left(\frac{\partial P}{\partial \pi}\right)^{n+1/2} \delta\pi + O\left((\delta\pi)^3\right)$$
Corrector for advective fluxes

\[\pi^{n+1} = \pi^n + \delta\pi \]

\[
(P\nu)^{n+1/2} = (P\nu)^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta\pi
\]

\[P^{n+1} = P^n - \Delta t \nabla \cdot (P\nu)^{n+1/2} \]

Solve Helmholtz equation

\[
\frac{2}{(\Delta t)^2} \left(\frac{\partial P}{\partial \pi} \right)^{n+1/2} \delta\pi - \nabla \cdot (P\theta \nabla \delta\pi) = \frac{2}{(\Delta t)^2} \left(P^{n+1,*} - P^n \right)
\]
Corrector for advective fluxes

\[\pi^{n+1} = \pi^n + \delta \pi \]

\[(P\nu)^{n+1/2} = (P\nu)^{n+1/2,*} - \frac{\Delta t}{2} P\theta \nabla \delta \pi \]

\[P^{n+1} = P^n - \Delta t \nabla \cdot (P\nu)^{n+1/2} \]

Exner pressure post-correction

\[\pi^{n+1} = \frac{1}{\Gamma} \left(P^{n+1} \right)^{\gamma-1} \]
Bells & Whistles

• Well-balanced discretization of gravity term / no background state
 ([1] Botta et al., JCP, 196, 539-565, (2004))

• Positivity of advection in spatial op-split mode

• Runge-Kutta, MUSCL-type, BDF2 predictor time integrators available

• Inf-Sup-stable version of projection step
Some results
Diagonally advected vortex

\begin{align*}
t &= 0 \\
& \quad \text{density} \quad \text{vorticity} \\
\quad \text{density} \quad \text{vorticity} \\
\quad \text{density} \quad \text{vorticity} \\
\end{align*}
Breaking wave-test for anelastic models (Smolarkiewicz & Margolin (1997)) ⇒ Joana’s talk!

Absorption layers
\[d = 0 \ldots 1/600s \]

\[
\begin{align*}
U &= 10 \text{ m/s} \\
N &= 0.01 \text{ 1/s}
\end{align*}
\]

“Witch of Agnesi”
\[h = 628 \text{ m}, \ l = 1000\text{m} \]
Results at time $t = 2h$

pseudo-incompressible

compressible, $CFL_{\text{adv}} = 1$

compressible, $CFL_{\text{ac}} = 2$
Breaking wave-test for anelastic models (Smolarkiewicz & Margolin (1997))

Compressible Euler eqs.

3 hours

sharpened van Leer’s limiter

$\Delta t \cdot \text{residual} < 10^{-4}$

CFL$_{adv} = 1.0$
Thermodynamically consistent "psinc"

Standard model in conservative form

\[\rho^* t + \nabla \cdot (\rho^* \mathbf{v}) = 0 \]

\[(\rho^* \mathbf{u}) t + \nabla \cdot (\rho^* \mathbf{v} \circ \mathbf{u}) + P \nabla || \pi = 0 \]

\[(\rho^* \mathbf{w}) t + \nabla \cdot (\rho^* \mathbf{v} \mathbf{w}) + \rho^* \theta \pi z = -\rho^* g \]

\[\nabla \cdot (\bar{P} \mathbf{v}) = 0 \]

\[\rho^* \theta = \bar{P}, \quad \pi = \bar{\pi}(z) + \pi', \quad \mathbf{v} = \mathbf{u} + \omega \mathbf{k} \quad (\mathbf{u} \cdot \mathbf{k} \equiv 0) \]

\[\rho^* \text{ is Durran's "pseudo-density"} \]
Thermodynamically consistent "psinc"

Standard model in momentum-advective form*

\[\rho^*_t + \nabla \cdot (\rho^* \mathbf{v}) = 0 \]

\[\mathbf{u}_t + \mathbf{v} \cdot \nabla \mathbf{u} + \theta \nabla || \pi' = 0 \]

\[w_t + \mathbf{v} \cdot \nabla w + \theta \pi'_z = g \frac{\theta - \bar{\theta}}{\bar{\theta}} = g \frac{\theta'}{\bar{\theta}} \]

\[\nabla \cdot (P \mathbf{v}) = 0 \]

\(\rho^* \) is the density effective in the momentum equation!

Thermodynamically consistent "psinc"

Thermodynamically consistent* model in conservative form

\[\rho^*_t + \nabla \cdot (\rho^* v) = 0 \]

\[(\rho^* u)_t + \nabla \cdot (\rho^* v \circ u) + \nabla \parallel p = 0 \]

\[(\rho^* w)_t + \nabla \cdot (\rho^* vw) + p_z = - \left(\rho^* + \frac{\partial \rho}{\partial p} p' \right) g \]

\[\nabla \cdot (\bar{P} v) = 0 \]

\[\rho^* \theta = \bar{P} , \quad p = \bar{p}(z) + p' , \quad v = u + w k \quad (u \cdot k \equiv 0) \]

Straka’s test

compressible (COMP)

\(p, p \)-formulation (PI)

thermodynamically consistent (TC)*
Straka’s test – model comparison
Limit regimes in atmospheric flows

Sound-proof limits

Semi-implicit scheme for compressible flows

Scale-dependent time integration

Extensions: Moisture & general Eqs. of State
Scale-dependent time integration

Why not simply solve the full compressible equations?

Competing approaches:

- Split-explicit / multi-rate methods, e.g.,
 - Runge-Kutta (slow) + forward-backward (fast), e.g.,
 Wicker & Skamarock, MWR, (98), ... ;
 MM5, LM, WRF ...
 - Multirate infinitesimal schemes, peer methods
 Wensch et al., BIT, (09);
 ASAM, ...

- Semi-implicit / linearly implicit schemes
 - explicit advection, damped 2nd or 1st-order schemes for fast modes, e.g.,
 Robert, Japan Met. J., (69), ... ;
 UKMO, ...
 - linearly implicit Rosenbrock-type methods, e.g.,
 Reisner et al., MWR, (05), ...;
 ASAM, LANL Hurricane model, ...

- Fully implicit integration
Scale-dependent time integration

Why not simply solve the full compressible equations?

Linear acoustics, simple wave initial data, periodic domain

(integration: implicit midpoint rule, staggered grid, 512 grid pts., CFL = 10)

![Graphs showing pressure changes over time](image)

- $t = 0$
- $t = 3$
Scale-dependent time integration

Why not simply solve the full compressible equations?

Linear acoustics, simple wave initial data, periodic domain
(integration: implicit midpoint rule, staggered grid, 512 grid pts., CFL = 10)

Ideas:

- Slave short waves \((c\Delta t/\ell > 1)\) to long waves \((c\Delta t/\ell \leq 1)\)
- with pseudo-incompressible limit behavior

“super-implicit” scheme
non-standard multi grid
projection method
Scale-dependent time integration

\[\varepsilon \ddot{y} + \varepsilon \kappa \dot{y} + y = \cos(t), \quad \begin{cases} y(0) = 1 + a \\ \dot{y}(0) = 0 \end{cases}, \quad (\varepsilon = 0.01) \]
Scale-dependent time integration

\[\varepsilon \ddot{y} + \varepsilon \kappa \dot{y} + y = \cos(t) \]

Slow-time asymptotics for \(\varepsilon \ll 1 \):

\[y(t) = y^{(0)}(t) + \varepsilon y^{(1)}(t) + \ldots, \quad y^{(0)}(t) = \cos(t) \]
\[y^{(1)}(t) = -(\ddot{y}^{(0)} + \kappa \dot{y}^{(0)})(t) \]

Associated “super-implicit” discretization (extreme BDF):

\[y^{n+1} = \cos(t^{n+1}) - \varepsilon [(\delta_t + \kappa) \dot{y}]^{*,n+1} \]
\[\dot{y}^{n+1} = \frac{1}{\Delta t} \left(y^{n+1} - y^n + \frac{1}{2} (y^{n+1} - 2y^n + y^{n-1}) \right) \]

where

\[u^{*,n+1} = 2u^n - u^{n-1} \]
\[(\delta_t u)^{*,n+1} = \frac{1}{\Delta t} \left(u^n - u^{n-1} + \frac{3}{2} (u^n - 2u^{n-1} + u^{n-2}) \right) \]
Scale-dependent time integration

Implicit midpoint rule \[\Delta t = 7 \sqrt{\varepsilon} \]

Super-implicit scheme

\[\Delta t = 7 \sqrt{\varepsilon} \]
Scale-dependent time integration

Implicit midpoint rule \(\Delta t = 5.55\sqrt{\varepsilon} \)

\(\Delta t = 5.55\sqrt{\varepsilon} \) Super-implicit scheme
Scale-dependent time integration

Blended scheme \(\Delta t = 5.55 \sqrt{\varepsilon} \)

\[
\Delta y\big|_{BL} = \eta \Delta y\big|_{IMP} + (1 - \eta) \Delta y\big|_{SupI}
\]

\(\Delta t = 5.55 \sqrt{\varepsilon} \) BDF2 – for comparison
Compressible flow equations:

\[\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0 \]

\[(\rho \mathbf{v})_t + \nabla \cdot (\rho \mathbf{v} \circ \mathbf{v}) + P \nabla \pi = -\rho g \mathbf{k} \]

\[P_t + \nabla \cdot (P \mathbf{v}) = 0 \]

\[P = p^{\frac{1}{\gamma}} = \rho \theta, \quad \pi = p/\Gamma P, \quad \Gamma = c_p/R \]
Scale-dependent time integration

For starters: **1D Linear acoustics:**

\[u_t + p_x = 0 \]
\[p_t + c^2 u_x = 0 \]

Desired:

- remove underresolved modes
- minimize dispersion for marginally resolved modes
Scale-dependent time integration

1D Linear acoustics:

\[
\begin{align*}
 u_t + p_x &= 0 \\
p_t + c^2 u_x &= 0
\end{align*}
\]

Desired:
- remove underresolved modes
- minimize dispersion for marginally resolved modes

Strategy:

scale-dependent IMP-SupI-Blended scheme via multi grid
Scale-dependent time integration

Implicit mid-point rule for linear acoustics

\[
\frac{u^{n+1} - u^n}{\Delta t} + \frac{\partial}{\partial x} p^{n+\frac{1}{2}} = 0, \quad \frac{p^{n+1} - p^n}{\Delta t} + c^2 \frac{\partial}{\partial x} u^{n+\frac{1}{2}} = 0
\]

with

\[
X^{n+\frac{1}{2}} = \frac{1}{2} \left(X^{n+1} + X^n \right)
\]

Implicit problem for half-time fluxes

\[
u^{n+\frac{1}{2}} = u^n - \frac{\Delta t}{2} \frac{\partial}{\partial x} p^{n+\frac{1}{2}}, \quad p^{n+\frac{1}{2}} = p^n - \frac{c^2 \Delta t}{2} \frac{\partial}{\partial x} u^{n+\frac{1}{2}}
\]

Eliminate \(u^{n+\frac{1}{2}} \)

\[
\left(1 - \frac{c^2 \Delta t^2}{4} \frac{\partial^2}{\partial x^2} \right) p^{n+\frac{1}{2}} = p^n - \frac{c^2 \Delta t}{2} \frac{\partial}{\partial x} u^n
\]
Scale-dependent time integration

Implicit mid-point rule \(\Rightarrow \) **super-implicit**

\[
\begin{align*}
 u^{n+\frac{1}{2}} &= u^n - \frac{\Delta t}{2} \frac{\partial}{\partial x} p^{n+\frac{1}{2}} \\
 p^{n+\frac{1}{2}} &= p^n - \frac{c^2 \Delta t}{2} \frac{\partial}{\partial x} u^{n+\frac{1}{2}}
\end{align*}
\]

key step:

\[
\begin{align*}
 u^{n+\frac{1}{2}} &= u^n - \frac{\Delta t}{2} \frac{\partial}{\partial x} p^{n+\frac{1}{2}} \\
 &= - \frac{c^2 \Delta t}{2} \frac{\partial}{\partial x} u^{n+\frac{1}{2}} - \frac{\Delta t}{2} \left(\frac{\partial p}{\partial t} \right)^{BD,n+\frac{1}{2}}
\end{align*}
\]

Pressure “projection” equation

\[
\frac{c^2 \Delta t}{2} \frac{\partial^2}{\partial x^2} p^{n+\frac{1}{2}} = c^2 \frac{\partial}{\partial x} u^n + \left(\frac{\partial p}{\partial t} \right)^{BD,n+\frac{1}{2}}
\]
Scale-dependent time integration

Scale-dependence via **multi-grid**

\[
p = \sum_{j=1}^{J} p^{(j)}
\]

where

\[
p^{(j)} = (1 - P \circ R) R^{j-1} p \quad \text{with} \quad R : \text{MG restriction} \quad P : \text{MG prolongation}
\]

scale-dependent blending

\[
u^{n+\frac{1}{2}} = u^n - \frac{\Delta t}{2} \frac{\partial}{\partial x} p^{n+\frac{1}{2}}
\]

\[
\sum_j \eta^{(j)} p^{(j) n + \frac{1}{2}} = \sum_j \eta^{(j)} p^{(j) n} - \frac{c^2 \Delta t}{2} \frac{\partial}{\partial x} u^{n + \frac{1}{2}} - \sum_j (1 - \eta^{(j)}) \frac{\Delta t}{2} \left(\frac{\partial p^{(j)}}{\partial t} \right)^{\text{BD,} n + \frac{1}{2}}
\]
Scale-dependent time integration

implicit midpoint

new scheme

BDF2
Scale-dependent time integration

- Implicit midpoint
- New scheme
- BDF2

![Graphs showing different schemes at t = 3](image-url)
Model Equations – Dispersion Relation and Amplitude

Implicit midpoint rule:

$CFL=1$

$CFL=10$

S. Vater & R. Klein (FU Berlin) Scale Dependent Discretizations PAKT Wolken Treffen 10 / 29
Model Equations – Dispersion Relation and Amplitude

BDF-2:
CFL=1

CFL=10
Dispersion Relation and Amplitude

Blended Scheme

CFL=10
Limit regimes in atmospheric flows

Sound-proof limits

Semi-implicit scheme for compressible flows

Scale-dependent time integration

Extensions: Moisture & general Eqs. of State
Moist pseudo-incompressible model

Bryan’s moist bubble test case

Run with straight pseudo-incompressible model*

Thermodynamically consistent version is work in progress
Conclusions
Publications

