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Abstract

Goals of this talk:

1. Set up a variational framework for deriving ideal (nondissipative)
soundproof fluid equations.

2. Derive the old soundproof models and a few new ones.

3. Discuss with you what should be done next.
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1 Sound

The fastest-moving atmospheric and oceanic waves are the sound waves, whose presence can adversely

affect numerical simulations of atmospheric and ocean circulations, by poisoning the desired low frequency

circulations with high frequency oscillations. The numerical simulations can be made soundproof by replacing

the exact governing equations with an approximate system that does not possess sound waves.

We will use standard variational methods to derive soundproof fluid models.
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Sound waves in 1D obey the following PDE in the density (D) with c2 =
[∂p/∂D]θ := const

Dtt − c2Dxx = 0 for D(x, t) ∈ R+

By standard variational methods (Fermat [1650], Lagrange [1770]) this wave
equation follows from

0 = δS = δ

∫ t1

t0

L(D) dt =

∫ t1

t0

〈
δL

δD
, δD

〉
dt

choose δ
∫ t1
t0
Ldt = δ

∫ t1

t0

1

2
(D2

t − c2D2
x) dx dt

= −
∫ t1

t0

(Dtt − c2Dxx)δD dx dt

for constant wave speeds ±c.
Note: 〈 · , · 〉 above denotes L2 pairing in 1D.
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Sound proofing the 1D sound equation

Try imposing the constraint D = 1 with Lagrange multiplier p. That is, set

0 = δS = δ

∫ t1

t0

1

2
(D2

t − c2D2
x) + p(D − 1) dx dt

=

∫ t1

t0

(Dtt − c2Dxx + p)δD + δp(D − 1) dx dt

• Then, of course, no waves propagate, because D is constant.

• This is trivial in 1D, because there aren’t enough variables to absorb the
constraint sensibly.

• In a moment, though, we will do something similar but more meaningful
for fluid dynamics.
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Variational formulation of ideal fluid dynamics

Theorem 1. The equations of ideal fluid dynamics follow from Hamilton’s
principle [HMR98, HMR02]

0 = δS = δ

∫ t1

t0

`(u, a) dt =

∫ t1

t0

〈
δ`

δu
, δu

〉
+

〈
δ`

δa
, δa

〉
dt

where u is the Eulerian fluid velocity and a ∈ V represents the set of
properties advected by the fluid.

Remark 2.

The key idea in using this HP is to represent the variations δu and δa in
terms of Lagrangian particle paths, raised to paths in the Lie group Diff(Ω)
of smooth invertible maps of the domain Ω into itself.
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g 1-

x

CurrentReference

g(t)

(t)

x0

Proof. The key idea. Let
x(t, x0) = gtx0

where gt : R→ Diff(Ω) and subscript t denotes dependence on time t ∈ R.
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If x(t, x0) = gtx0, then

ẋ(t, x0) = ġtx0 = u(x(t, x0), t) = ut ◦ gtx0 and a0(x0) = at ◦ gtx0

=⇒ ut = ġtg
−1
t and at = a0g

−1
t = g∗t a =⇒ (∂t + £u)at = 0 .

In the advection law (∂t + £u)at denotes the partial time derivative of the
advected quantity at, plus its Lie derivative along the vector field u.

(∂t+£u) is the Eulerian expression for the total Lagrangian time derivative.

For example, when a = D(x, t)dnx we compute the continuity equation as

(∂t + £u)
(
D(x, t)dnx

)
=
d

dt

(
D(x(t, x0), t)dnx(t, x0)

)
along

dx

dt
= u(x, t)

=
(
∂tD +∇D · u + D divu

)
dnx
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Lemma 3.
For the vector field η = δgg−1 ∈ X(Ω), the following variational formulas
hold

δu = ∂tη + £ηu and δa = −£ηa ,

where £ denotes Lie derivative. For example, δa = d
dε

∣∣
ε=0a0g

−1
ε = −£ηa.

Proof. Write u = ġg−1 and η = δgg−1 = g′g−1 in natural notation and
express the partial derivatives

ġ = ∂g/∂t and δg = g′ = ∂g/∂ε|ε=0

by using the right translations as

ġ = u ◦ g and g′ = η ◦ g .
Then a simple use of the chain rule proves δu = ∂tη + £ηu.

Likewise, δa = −£ηa follows from the definition a = a0g
−1 by computing

δa = a0δ(g−1) = − a0g
−1δgg−1 = − aη = −£ηa
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Details of the proof of the Lemma:

By the chain rule, the mixed partial derivatives of these definitions satisfy

ġ′ = u′ = ∇u · η and ġ′ = η̇ = ∇η · u .
The difference of the mixed partial derivatives implies the desired formula,

u′ − η̇ = ∇u · η −∇η · u = [η, u] =: £ηu ,

so that
u′ = η̇ + £ηu .
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Continuing the proof of the theorem:

By the Lemma, we have

δu = ∂tη + £ηu and δa = −£ηa.

Consequently, we find

0 = δS =

∫ t1

t0

〈
δ`

δu
, δu

〉
+

〈
δ`

δa
, δa

〉
dt

=

∫ t1

t0

〈
δ`

δu
, ∂tη + £ηu

〉
X

+

〈
δ`

δa
,−£ηu

〉
V
dt

=

∫ t1

t0

〈
− ∂

∂t

δ`

δu
− δ`

δu
� u +

δ`

δa
� a , η

〉
X
dt

The operation diamond (�) is defined by equating two different pairings:〈
b � a, η

〉
X

:=
〈
b,−£ηa

〉
V
,

where a ∈ V and b ∈ V ∗ are L2 dual quantities.

Remark: Diamond (�) puts δu and δa on the same footing.
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Conclusion of the proof

Hamilton’s principle δS = 0 has yielded the Euler-Poincaré (EP) equation

∂

∂t

δ`

δu
+
δ`

δu
� u =

δ`

δa
� a ,

which is completed by the auxiliary geometrical equation for the advected
quantities a

(∂t + £u)a = 0 .



Cotter and Holm Variational soundproof models 13

Summary

Hamilton’s principle has produced the following Euler-Poincaré (EP) system
of equations

∂

∂t

δ`

δu
+
δ`

δu
� u =

δ`

δa
� a and (∂t + £u)a = 0 .

The diamond operation (�) must be calculated for each quantity, depending
on how it transforms under Diff(Ω)

u : vector field,
δ`

δu
� u = £u

δ`

δu

D : mass density,
δ`

δD
�D = −D∇ δ`

δD
· dx⊗ dnx = − d

(
δ`

δD

)
⊗Ddnx

θ : potential temperature,
δ`

δθ
� θ =

δ`

δθ
∇θ · dx⊗ dnx =

δ`

δθ
dθ ⊗ dnx
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Outlook for the remainder of the talk

We now have the EP variational framework that we will need to

derive soundproof fluid models.

First, though, we will prove

(1) Kelvin’s circulation theorem

and

(2) Conservation of potential vorticity

in the EP variational framework
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Kelvin circulation theorem.

The EP system is

(∂t + £u)
δ`

δu
=
δ`

δa
� a and (∂t + £u)a = 0 .

The corresponding Kelvin circulation theorem emerges on using

(∂t + £u)D = ∂tD +∇ · (Du) = 0.

Then we calculate

d

dt

∮
c(u)

1

D

δ`

δu
=

∮
c(u)

(∂t + £u)

(
1

D

δ`

δu

)
=

∮
c(u)

1

D

δ`

δa
� a

which for (D, θ) ∈ a =

∮
c(u)
−d
(
δ`

δD

)
+

1

D

δ`

δθ
dθ =

∮
c(u)

1

D

δ`

δθ
dθ

So Kelvin’s theorem is,

d

dt

∮
c(u)

1

D

δ`

δu
=

∮
c(u)

1

D

δ`

δθ
dθ
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Stokes theorem now gives us

(∂t + £u)d

(
1

D

δ`

δu

)
= d

(
1

D

δ`

δθ

)
∧ dθ

Hence, on using (∂t + £u)θ = ∂tθ + u · ∇θ = 0 and

[d,£u] = d£u −£u d = 0 ,

we find

(∂t + £u)

(
d

(
1

D

δ`

δu

)
∧ dθ

)
=

(
d

(
1

D

δ`

δθ

)
∧ dθ

)
∧ dθ = 0

Therefore, the scalar potential vorticity

q := D−1∇θ · curl

(
1

D

δ`

δu

)
is conserved on fluid particles,

(∂t + £u)q = ∂tq + u · ∇q = 0 .
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Soundproofing

For (D, θ) ∈ a we will use Lagrange multiplier p to constrain the Lagrangian
to relate the mass density D and potential temperature θ by

0 = δS = δ

∫ t1

t0

`(u,D, θ) + p
(
D0(z)Θ(θ0(z))−DΘ(θ)

)
︸ ︷︷ ︸

SP constraint

dt

where Θ(θ) is a function of the potential temperature to be chosen shortly.

Then the δp variation will yield

δp
(
D0(z)Θ(θ0(z))−DΘ(θ)

)
= 0

This SP constraint ties D to θ and makes DΘ(θ) time-independent.
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The SP constraint ties D to θ and makes DΘ(θ) time-independent.

The product DΘ(θ) = D0(z)Θ(θ0(z) is frozen into the particle motion,

∂(DΘ(θ))

∂t
+∇ · (DΘ(θ)u) = 0 ,

and its time-independence produces a type of incompressibility relation

∇ ·
(
D0(z)Θ(θ0(z))u

)
= 0 ,

whose preservation in time determines the pressure p in the motion equation.

Thus, the SP constraint prohibits waves from propagating through the fluid.
In particular, no sound can propagate in a fluid model that obeys this con-
straint. In other words, this constraint produces soundproof models.

Next, we will write the EP equations for this constrained Lagrangian and
choose Θ(θ) so as to recover previous soundproof ideal fluid models.
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2 Hamilton’s principle for known soundproof GFD motion equations

For the soundproof (SP) models, we have proposed a Lagrangian given by

`SP =

∫ [
D

(
1

2
|u|2 + u ·R(x)− gz − Cvπ0(z) θ

)
+ p

(
D0(z)Θ(θ0(z))−DΘ(θ)

)
︸ ︷︷ ︸

SP constraint

]
d 3x . (2.1)

Recall that D denotes the mass density, u is the Eulerian fluid velocity, R
is a vector field whose curl is 2Ω (twice the local angular rotation vector),
θ is the total potential temperature, θ0(z), π0(z) and D0(z) are reference
profiles, Cv is a constant and Θ is an arbitrary smooth function that we are
free to choose.
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Theorem 4. Let Θ(θ) = 1 − α + αθ. Then the EP system (1) for the
Lagrangian (2.1) recovers the following known SP models:

1. The anelastic approximation (AA) of [OP62], [LH82] and [Ban96] for
α = 0;

2. The pseudo-incompressible approximation (PIA) of [Dur89, Dur08] for
α = 1, and

3. The divergence-free (Euler) flows for α = 0 and D0(z) = 1.

Corollary 5. The quasi-hydrostatic versions of these theories follow by
ignoring the kinetic energy of vertical motion in these Lagrangians, before
taking variations. See Arakawa and Konor [2009] [AK09].
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Table 1: GFD models arise from asymptotics in Hamilton’s principle.

lEuler =

∫ [
D(1 + b)

(
R(x) · u︸ ︷︷ ︸
Rotation

+
ε

2
|u|2 +

ε

2
σ2w2︸ ︷︷ ︸

Kinetic Energy

− z

εF︸ ︷︷ ︸
Pot Energy

)
− p(D − 1)︸ ︷︷ ︸

Constraint

]
d3x

• lEuler → lEB, for small buoyancy, b = O(ε).

• lEB → lPE, for small aspect ratio, σ2 = O(ε).

• lPE → lHBE, for horizontal velocity decomposition,

u = ẑ ×∇ψ + ε∇χ = uR + εuD , and |u|2 → |uR|2 in lPE .

• lHBE → l1 [Sal88], for horizontal velocity,

u = u1 = ẑ ×∇φ̃ ,

where

φ̃(x3, t) = φS(x, y, t) +

∫ 0

z

dz′ b ,

i.e. ∂φ̃/∂z = − b and dropping terms of order O(ε2) in lHBE.

• l1 → lQG, on dropping terms of order O(ε2) in the Euler–Poincaré equations for l1.
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Table 2: Non-dimensional Lagrangians for GFD models.

lEuler =

∫ [
D(1 + b)

(
R(x) · u +

ε

2
|u|2 +

ε

2
σ2w2 − z

εF

)
− p(D − 1)

]
d3x

lEB =

∫ [
D
(
R · u +

ε

2
|u|2 +

ε

2
σ2w2 − bz

)
− p(D − 1)

]
d3x

lPE =

∫ [
D
(
R · u +

ε

2
|u|2 − bz

)
− p(D − 1)

]
d3x

lHBE =

∫ [
D
(
R · u +

ε

2
|u− εuD|2 − bz

)
− p(D − 1)

]
d3x

l1 =

∫ [
D
(

(R + εu1) · u−
ε

2
|u1|2 − bz

)
− p(D − 1)

]
d3x

lQG =

∫
D

∫ z1

z0

[
D
(
R · u +

ε

2
u · (1− L(z)∆−1)u

)
− p(D − 1)

]
dz d2x ,

where

L(z) =
( ∂
∂z

+ B
) 1

S(z)

( ∂
∂z
−B

)
−F

and B = 0 for standard QG.
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Discussion Questions:

(1) Can we put dissipation into soundproof fluid models?

(Yes! Diffuse the momentum, m = δ`/δu)

(2) Can we use this variational framework to develop numerical codes?

(Yes! Would it be worthwhile to do it? Probably!)

(3) Can we use the soundproof idea to try to keep weather prediction dy-
namics on a slow manifold? (Don’t know. Any ideas?)

(4) Does soundproofing limit the wavenumber of rapid change in the solu-
tions, say, due to convective over-turning and rapid adjustment?

(Hint: The primitive equations still allow very high wavenumbers.)

(5) Can we do multi-scale soundproofing to model the effects of seasonal
variations on the local weather, say, by making the reference state time-
dependent?

(Don’t know. Any ideas?)
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Discussion Questions, continued:

(6) For multi-scale soundproofing, should we consider large-scale flow as
Lagrangian reference coordinates for small-scale flow?

(7) Are there other ways to make the model soundproof?

What about simply regularising to slow down the sound waves?

Would this be good enough?

(8) What other problem(s) should we be trying to solve using this variational
framework?

(9) What is the exact relation of the EP variational framework to Rupert
Klein’s paper, Scale-Dependent Models for Atmospheric Flows, [Kle10]?

(10) What else needs to be done, in order of priority?
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