A non-hydrostatic SI dynamical core : current-state, limitations and perspectives

Pierre Bénard

(Thanks to: F. Voitus, S. Caluwaerts, Ch. Colavolpe, Y. Seity, ...)

Météo-France CNRM/GMAP

02-05 Sept. 2013, Reading

P. Bénard (Météo-France)

A NH SI dynamical core

02-05 Sept. 2013, Reading 1 / 27

INTRODUCTION

Galaxy

We speak about the dynamical core of the following "galaxy" : IFS(ECMWF) / ARPEGE (MF) / ALADIN (Int'l) / HARMONIE (Int'l)

The dynamical core of these models share many parts in common, developed jointly, code cooperation

History (dynamical core)

٩	IFS+ARPEGE (Global HPE)	oper
٩	ALADIN (LAM HPE)	oper
٩	ALADIN NH (LAM NH) - HARMONIE, AROME	oper
٩	ARPEGE NH and IFS NH (Global NH)	xper

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Three talks are dealing more or less with the same dynamical core (or research avenues) :

- N. Wedi
- P. Bénard (time)
- M. Hortal (space)

A B < A B </p>

INTRODUCTION

OUTLINE of the talk

- Current status of AROME model
- Limitations (mainly from SI point of view)
- Perspectives

э

< □ > < □ > < □ > < □ > < □ > < □ >

CURRENT STATUS of AROME

What is AROME ?

- AROME: High resol LAM model NH (Euler Equations) operational at Meteo-France (also in some other countries)
- Dyn core IFS/ARP/ALA-NH (common concept, spectral SI SL)
- "Meso-scale" physics from 90-00's research world (column-wise)
- 3D-VAR Data Assimilation with 3h cycle
- Many mesoscale observations assimilated (Radar reflectivities, Doppler wind, thiner Sat radiances...)

Current oper configuration of AROME

- $\Delta x = 2.5$ km, 60 levels, 750*720 points
- $\Delta t = 60s$ (30h forecasts)
- limited overcost with respect to HPE version

P. Bénard (Météo-France)

A NH SI dynamical core

02-05 Sept. 2013, Reading 5 / 27

(日)

CURRENT STATUS of AROME

Experimental version (1)

- $\Delta x = 1.3$ km, 90 levels, $\Delta t = 45$ s
- Prototype for next oper version
- smaller domain, dynamical adaptation (no Data Assim)
- $\bullet\,$ Has run routinely at 00UTC $\rightarrow\,$ 30h for one year
- robust, positive impact, nice results

Experimental version (2)

- $\Delta x = 0.5$ km, ${\sim}100$ levels, Δt 10-15s
- Only isolated test cases (in dynamical adaptation)
- ullet ightarrow robustness OK (but small sample)

< □ > < □ > < □ > < □ > < □ > < □ >

Next operational configuration of AROME

Characteristics

- $\Delta x = 1.3$ km, 90 levels, 1536*1440 points
- $\Delta t = 45s$ (still 30h forecasts)

CPU overcost to current version

$\Delta x + Dom$	Δz	Δt	$SI\toICI$	Other	Total
×4.1	$\times 1.5$	×1.33	$\times 1.1$	$\times 1.1$	×10

Maximum slope : $23^{\circ} \rightarrow 38^{\circ}$ hence "SI \rightarrow ICI" .

On new Bull machine \sim 25000 cores (\sim 1000 nodes) \sim 500 tflops \Rightarrow new AROME ($\Delta x = 1.3$ km) in operations at summer 2014.

P. Bénard (Météo-France)

P. Bénard (Météo-France)

A NH SI dynamical core

02-05 Sept. 2013, Reading 8 / 27

3

< □ > < 同 > < 回 > < 回 > < 回 >

Indentified concerns

- Scalability (mainly at high granularity)
- Ability to manage severe high-resolution flows and slopes
- Compatibility with new developments (e.g. change progn. var., Vertical Finite Elements,...)

Possible modifications (of time-scheme) for solutions

- ロ ト - (同 ト - - 三 ト - - 三 ト

Indentified concerns

- Scalability (mainly at high granularity)
- Ability to manage severe high-resolution flows and slopes
- Compatibility with new developments (e.g. change progn. var., Vertical Finite Elements,...)

Possible modifications (of time-scheme) for solutions

• Improve the SI scheme

- ロ ト - (同 ト - - 三 ト - - 三 ト

Indentified concerns

- Scalability (mainly at high granularity)
- Ability to manage severe high-resolution flows and slopes
- Compatibility with new developments (e.g. change progn. var., Vertical Finite Elements,...)

Possible modifications (of time-scheme) for solutions

- Improve the SI scheme
- Give-up some implicitness \rightarrow "HEVI"

- ロ ト - (同 ト - - 三 ト - - 三 ト

Indentified concerns

- Scalability (mainly at high granularity)
- Ability to manage severe high-resolution flows and slopes
- Compatibility with new developments (e.g. change progn. var., Vertical Finite Elements,...)

Possible modifications (of time-scheme) for solutions

- Improve the SI scheme
- Give-up some implicitness \rightarrow "HEVI"
- $\bullet\,$ give-up implicitness and use filtered system \to Explicit Quasi-Elastic

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・

Indentified concerns

- Scalability (mainly at high granularity)
- Ability to manage severe high-resolution flows and slopes
- Compatibility with new developments (e.g. change progn. var., Vertical Finite Elements,...)

Possible modifications (of time-scheme) for solutions

- Improve the SI scheme
- Give-up some implicitness \rightarrow "HEVI"
- give-up implicitness and use filtered system \rightarrow Explicit Quasi-Elastic

Retained option for mid-term: improve SI scheme

P. Bénard (Météo-France)

A NH SI dynamical core

02-05 Sept. 2013, Reading 9 / 27

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

System to solve (e.g. in Leap-Frog)

$$rac{\partial X}{\partial t} = M(X) \quad o \quad rac{X^+ - X^-}{2\Delta t} = RHS$$

Two limiting-case of centered time schemes

- Explicit :
$$\frac{X^+ - X^-}{2\Delta t} = M(X^0)$$

 \rightarrow easy, bad stability (wave-CFL)
- Crank-Nicolson: $\frac{X^+ - X^-}{2\Delta t} = M\left(\frac{X^+ + X^-}{2}\right)$
 \rightarrow very good stability, but very difficult to attain

A NH SI dynamical core

02-05 Sept. 2013, Reading 10 / 27

э

イロト イポト イヨト イヨト

Original SI scheme (1970s)

Choose a simple stationary fixed state X_* Define the linear operator L_* as $L_* = \frac{\partial M}{\partial X}|_{X_*}$ Then SI scheme:

$$\frac{X^{+} - X^{-}}{2\Delta t} = [M - L_{*}](X^{0}) + L_{*}\left(\frac{X^{+} + X^{-}}{2}\right)$$

$$X^{+} = (I - \Delta t L_{*})^{-1} \left\{ X^{-} + \Delta t \left[2M(X^{0}) + (L_{*}X^{-} - 2L_{*}X^{0}) \right] \right\}$$

Stability depends on what is in $[M - L_*]$ and may lead to bad surprises...

P. Bénard (Météo-France)

A NH SI dynamical core

02-05 Sept. 2013, Reading 11 / 27

< 日 > < 同 > < 回 > < 回 > < 回 > <

"General pedagogy" about SI Schemes

- Stable explicit schemes are conditionally stable (in terms of Δt), CFL...

Analysis for simple flows :

SI schemes may be unconditionally stable (in terms of Δt) e.g. handbooks : "... SI-SL unconditionally stable ... "

Ignoring SI overcost

"I'm going to add a SI scheme in my model, putting some implicitness in the scheme cannot hurt..."

イロト 不得 トイヨト イヨト

"General pedagogy" about SI Schemes

- Stable explicit schemes are conditionally stable (in terms of Δt), CFL...

Analysis for simple flows :

SI schemes may be unconditionally stable (in terms of Δt) e.g. handbooks : "... SI-SL unconditionally stable ... "

Ignoring SI overcost

"I'm going to add a SI scheme in my model, putting some implicitness in the scheme cannot hurt..."

This is wrong !

- SI schemes may be unconditionally unstable (in terms of Δt)

- 'unstable' SI schemes are unconditionally unstable (in terms of Δt)

(日)

Robustness of simple SI schemes becomes poorer and poorer when the stiffness of the system increases: SW \rightarrow HPE \rightarrow EE \rightarrow EE + High Resolution

If SI kept, need to improve it (from the original idea)

Two main ways:

(4 個) トイヨト イヨト

"TL-SI" Schemes

Improving the content of L_*

If we define $X_* = X^0$ (X at current time-step) The linear operator L_* is then $L_0 = \frac{\partial M}{\partial X}|_{X_0}$ (same TL as in 4D-VAR) Then SI scheme:

$$\frac{X^{+} - X^{-}}{2\Delta t} = [M - L_0](X^0) + L_0\left(\frac{X^{+} + X^{-}}{2}\right)$$

Very close to Crank-Nicolson, need to invert L_0 ($I - \Delta t L_0$, indeed) But L_0 is large 3D, non-sparse, time-dependant, and ill-conditioned solution approached by iterative solver operator of the size of XNot very realistic (4D-VAR uses TL, but does not try to invert it) Practical approach : drop as much as possible terms or dependencies in L_0 while trying to remain stable Instability usually occur by lack of convergence toward the aimed scheme in the iterative solver.

P. Bénard (Météo-France)

"ICI" Schemes

Improve by iterating L_*

Define a time-independant linear operator L_* Then use iterative scheme (with iterator index k):

$$\frac{X^{+(k)} - X^{-}}{2\Delta t} = M(\frac{X^{+(k-1)} + X^{-}}{2}) + L_{*}\left(\frac{X^{+(k)} - X^{+(k-1)}}{2}\right)$$

Initialize by a simple extrapolated estimate: $X^{+(0)} = (2X^0 - X^-)$ $k = 1 \rightarrow \text{classical SI scheme}$

$$\frac{X^{+}-X^{-}}{2\Delta t} = M\left[\frac{(2X^{0}-X^{-})+X^{-}}{2}\right] + L_{*}\left[\frac{X^{+}-(2X^{0}-X^{-})}{2}\right]$$

then k = 2, k = 3, ... \rightarrow ICI scheme If converging, converges toward Crank-Nicolson scheme Pre-inversion \Rightarrow still relatively cheap (if k_{\max} small) If L_* too simple, will not lead to a convergent system

P. Bénard (Météo-France)

A NH SI dynamical core

TL-LI and ICI Schemes

These are not the same

$$\frac{X^{+} - X^{-}}{2\Delta t} = [M - L_{*}](X^{0}) + L_{*}\left(\frac{X^{+} + X^{-}}{2}\right)$$

- TL-SI tries to minimize L_{*} L_{X0} (to treat explicitely only the NL part of M)
- ICI tries to approach Crank-Nicolson globally (to treat explicitely nothing)
- Both can always be combined

(4 個) トイヨト イヨト

Limitations of the current AROME SI scheme

- Spectral: very efficient SI (direct solver), but:
- Spectral SI ⇒ Constant Coefficients SI (CCSI) coefficients of L_{*} must not depend on space otherwise no longer (direct) solution of SI problem Example SW:

$$(I - \Delta t^2 \phi_* \nabla^2) \phi^+ = \text{RHS}$$

$$(I - \Delta t^2 \phi_*(\mathbf{x}) \nabla^2) \phi^+ = \mathrm{RHS}$$

 $\bullet\,$ Slopes increase with resolution $\to\,$ CCSI not robust enough:

$$\Delta x = 2.5$$
 km: CCSI robust with $\Delta t = 60$ s

- $\Delta x = 1.3$ km: CCSI not fully robust with $\Delta t = 30$ s
- $\Delta x = 1.3$ km: CC ICI robust with $\Delta t = 45$ s (one iteration k = 2)

Still OK (with ICI) - even 30% cheaper - but indicates danger

P. Bénard (Météo-France)

< □ > < □ > < □ > < □ > < □ > < □ >

Prioritizing identified concerns

• Scalability:

We think we can survive at mid-term (FLT,...)

- Compatibility with new developments: We have now good hope to manage implementing VFEs
- Severe flows and slopes:

Is prioritized as the main concern at mid-term

A NH SI dynamical core

02-05 Sept. 2013, Reading 19 / 27

э

< □ > < 同 > < 回 > < 回 > < 回 >

Postulates

- Assume the current SI scheme is operational-proof at $\Delta x \sim 500$ m (accuracy of the response, ability to include progesses, scalability)
- Assume (or show) that future potential problems first originate from the orographic forcing
- Concentrate on including orographic forcing terms in the SI scheme (only)
 Try to keep the time-independant SI inversion problem pre-computed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Include the orographic forcing into the SI treated terms

- SI problem remains time-independant by nature
- SI problem no longer homogeneous linear, non-separable
 → requires a 3D non-direct solver
- Strong identity required between space operators used in explicit RHS and in implicit LHS (to be inverted).

 $(u^+ + \Delta t \partial_x)T^+ = \dots + \Delta t \partial_x (2T^0 - T^-)$

- Non-possible choice: spectral computation of derivatives in explicit terms and grid-point operators in the matrix of the implicit scheme
- Matrix form of spectral ∂_x possible but \rightarrow many full blocks non-sparse 3D SI problem, not realistic (although time-independant)
- Non-spectral model / local horizontal operators only (preserve sparsity).
 - \Rightarrow Horizontal: high-order FE

Consequences of non-spectral model

- Make the use of the solver compatible with efficiency/scalability Choose solver which exploits sparse matrix property
- Which variables and staggering for horizontal FE ? (next slide)
- For global model, which grid geometry for horizontal FE (next slide)
- Preserve pre-computation SI operator ???

ヘロト 人間 ト イヨト イヨト

Which variables and staggering for horizontal FE ?

- Deals with short gravity waves propagation, geostrophic adjustment and computational modes
- Advantages of non-staggered grids:
 - Approach valid on any grid-geometry (i.e. problem of discretisation disconnected from the one of the geometry)
 - Preserve (u+v):p d.o.f. ratio for no spurious computational modes (ratio 2:1 ensures only 2 gravity modes for one Rossby mode)
- Examine non-staggered grid with Vor-Div variables:
 - correct propagation of short gravity waves
 - needs transform $(VOR, DIV) \rightarrow (u, v)$ (Poisson Equation)
 - non-locality reappears, however standard and 2D problem ...
- PhD work by S. Caluwaerts (IRM Brussels)

イロト イボト イヨト イヨト

Which grid-geometry for global horizontal FE ?

Deals with spurious evolution of Rossby waves

Reduced lat-lon grids

- Reported drawback: distorted Rossby waves propagation with spurious meridional transport
 - ... but this is only only for 40 years-old configurations
 - ... with 2nd-order FD schemes, with very low resolutions
 - ... and drastic grid-reduction
- Preserves simple geometry along each parallel circle $(\partial/\partial \lambda)$: trivial 1D uniform spacing $(\partial/\partial \varphi)$: uniform spacing
- Preserves existing model architecture

< □ > < □ > < □ > < □ > < □ > < □ >

Further perspectives (not discussed)

- explore horizontally explicit schemes (HEVI) for EE coupled with time-splitting technique use with a pre-computed vertical SI scheme sensitivity to the choice of the variable (Phd work by Ch. Colavolpe)
- explore non-terrain-following coordinate with 'step-orography' for very high resolution ('kick' response at orography-steps become evanescent?)

< □ > < □ > < □ > < □ > < □ > < □ >

CONCLUSIONS

P. Bénard (Météo-France)

A NH SI dynamical core

02-05 Sept. 2013, Reading 26 / 27

3

イロト イヨト イヨト イヨト

- Current SI scheme may reach its viability limits at some mid-term
- However still very competitive ⇒ mid-term-strategy : change space-discretization (FE) and keep (improved) SI scheme
- Try to keep unmodified the deepest architectural nucleus of the model's kernel: grid A + lat-lon (reduced)
- This step is compatible with longer-term programs (HEVI,...)

< □ > < □ > < □ > < □ > < □ > < □ >